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REGULAR ARTICLE

Shaping the precision of letter position coding by varying properties of a writing
system
Clare Lallya, J. S. H. Taylorb, Chang H. Leec and Kathleen Rastle a

aDepartment of Psychology, Royal Holloway University of London, Egham, UK; bSchool of Life and Health Sciences, Aston University,
Birmingham, UK; cDepartment of Psychology, Sogang University, Seoul, Korea

ABSTRACT
There is substantial debate around the nature of letter position coding in reading. Research on a
variety of Indo-European languages suggests uncertainty in position coding; for example, readers
perceive transposed-letter stimuli (jugde) as similar to their base words (judge). However, these
effects are not apparent for all languages. We developed a powerful new method to delineate
how specific properties of a writing system shape the representation of letter position. Two
groups of 24 adults learned to read novel words printed in artificial scripts. One group learned a
dense orthography (i.e. with many anagrams) and one group learned a sparse orthography (i.e.
no anagrams). Following four days of training, participants showed a larger transposed-letter
effect in the sparse orthography than in the dense orthography. These results challenge existing
models of orthographic processing in reading, and support the claim that orthographic
representations are shaped by the nature of the writing system.
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There is a broad consensus that printed words in alpha-
betic languages are recognised through the analysis of
letters. Information about letter identity helps readers
to distinguish words like SLAT and SPAT that differ
by a single letter, while information about letter pos-
ition permits readers to distinguish anagrams like
SLAT and SALT that consist of the same letters in
different positions. The nature of position coding in
visual word recognition has become a point of major
theoretical debate over the past decade (e.g. Davis,
2010; Gomez, Ratcliff, & Perea, 2008; Grainger &
Whitney, 2004).

Substantial evidence suggests that readers of Indo-
European languages are tolerant of transposed letters
in word identification (e.g. jugde activates judge;
Perea & Lupker, 2003). In standard visual lexical decision,
nonwords that are transposed-letter anagrams of words
(e.g. silimar) are harder to reject than nonwords that are
not (e.g. sitinar; Andrews, 1996; Chambers, 1979; Lupker,
Perea, & Davis, 2008; Perea & Lupker, 2004). Similarly,
masked priming studies show that recognition of a
target word is speeded by prior presentation of a trans-
posed-letter prime (e.g. sevrice-SERVICE), relative to a
substitution prime (e.g. sedlice-SERVICE; Schoonbaert &
Grainger, 2004). This transposed-letter effect extends to
cases in which the transposition crosses a syllable
boundary (e.g. caniso-CASINO versus caviro-CASINO;

Perea & Lupker, 2003) and to more extreme modifi-
cations (e.g. snawdcih-SANDWICH versus skuvgpah-
SANDWICH; Guerrera & Forster, 2008). These findings
all suggest that there is a high degree of perceptual simi-
larity between stimuli that comprise the same letters in
different positions.

These results highlight a fundamental problem in
word recognition. Clearly, we can distinguish snawdcih
and sandwich, so letters must be coded for position.
However, this coding must comprise some degree of
uncertainty or flexibility; otherwise, these stimuli would
not be treated as perceptually similar. This insight has
inspired a variety of competing theories that propose
to solve this problem, including the SOLAR model
(Davis, 2010), the Open Bigram model (Grainger &
Whitney, 2004), the Noisy Channel model (Norris &
Kinoshita, 2012), and the Overlap model (Gomez et al.,
2008). Though these models have important differences,
they all assert that letter position is coded in a way that
leads to perceptual uncertainty. Further, uncertainty in
letter position coding is argued to be a general property
of the cognitive system (Perea & Carreiras, 2012), and
caused by low-level visual (e.g. crowding, acuity; Grain-
ger, Dufau, & Ziegler, 2016) and neurobiological factors
(e.g. noisy retinotopic firing, nature of the receptive
field structure; e.g. Dehaene, Cohen, Sigman, & Vinckier,
2005).
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However, recent evidence suggests that letter pos-
ition uncertainty does not extend to all writing
systems. In a series of studies in Hebrew, Velan and
Frost (2007, 2011) showed that word recognition is not
facilitated by prior presentation of a transposed-letter
prime relative to a substitution control. Frost (2012)
argued that the reason for this can be traced to proper-
ties of the writing system. Specifically, Hebrew is very
dense orthographically, with many anagrams. Hebrew
readers must therefore develop precise orthographic
position coding, as tolerance to disruptions of letter
order would often result in accessing the meaning of
the wrong word. Evidence for precise orthographic rep-
resentations has also been provided in Korean (Lee &
Taft, 2011; Rastle, Lally, & Lee, 2019) – another language
with a dense orthography, but which otherwise shares
little similarity with Hebrew. Frost (2012) emphasised
that reading is a learned skill, and that while this
process will necessarily be constrained by low-level
visual and neurobiological processes, flexibility will
emerge only where it maximises the efficiency of word
recognition. This conclusion is supported by simulations
showing that distributed-connectionist networks trained
on artificial languages yield more flexible position coding
for sparse orthographies compared to dense orthogra-
phies (Lerner, Armstrong, & Frost, 2014).

Though Frost (2012) presents a compelling argument
that orthographic density is a major constraint on letter-
position coding, it is difficult to draw this conclusion
definitively from cross-linguistic comparisons since
there are substantial differences across languages over
and above orthographic density. Hebrew is characterised
by a non-concatenative morphological system compris-
ing tri-consonantal roots, which modify properties of
the verb such as person, gender and tense. Similarly,
Korean is characterised by physically-demarcated sylla-
ble blocks with a rigid consonant–vowel-consonant
(CVC) structure. In addition, readers of these languages
almost certainly differ in a myriad of ways (e.g. method
of reading instruction, language and reading experi-
ence). In light of these differences, it is difficult to draw
strong conclusions about the specific impact of density
on the development of orthographic representations.

Our work brings a new dimension to this debate by
using an innovative approach that has the potential to
reveal how flexibility in position coding is influenced
by specific properties of writing systems. We use a lab-
oratory analogue of reading acquisition in which adults
are trained on novel words in unfamiliar scripts (Taylor,
Plunkett, & Nation, 2011; Taylor, Davis, & Rastle, 2017).
This approach allows precise control over what partici-
pants learn and how they learn in a way that could
never be achieved using natural language comparisons.

We trained participants on novel words from artificial
writing systems designed to be orthographically sparse
or dense, but which otherwise were identical in factors
relevant to word perception (e.g. syllable structure, mor-
phological structure, positional letter frequency). We
then used the transposed-letter effect to assess the pre-
cision of participants’ emerging letter position coding.
On the basis of Frost (2012), we predicted that partici-
pants who had learned the orthographically dense
writing system would show a smaller transposed-letter
effect, indicating greater precision in letter position
coding, than those trained on the sparse writing system.

Method

Participants

Forty-eight monolingual English speakers completed the
experiment at Royal Holloway University of London, in
exchange for £60. All participants were aged 18–25
years old and had no history of language or reading
difficulties. Participants were assigned to one of the
two writing systems.

Stimuli

Trained items
Two artificial writing systems were constructed, each
comprising 24 pseudowords printed in an unfamiliar
script. In both writing systems, each novel word con-
sisted of five letters and two syllables, and had a
CVCVC structure. These novel words were constructed
from 17 letters (12 consonants, 5 vowels), and the spel-
ling-to-sound relationship in both languages was con-
sistent, i.e. each letter had one sound. Critically, both
the overall frequency and positional frequency of indi-
vidual symbols was equated across writing systems,
with consonants appearing 6 times and vowels appear-
ing 8–10 times in the trained novel words. However,
one writing system was sparse (i.e. no anagrams) while
the other writing system was dense (i.e. each word was
an anagram of another word in the orthography,
created by switching the initial and final consonant or
by switching the initial and middle consonant). Figure
1 presents an example of the trained stimuli from the
sparse and dense writing systems and their pronuncia-
tions. A full list of stimuli can be found in the Open
Science Framework storage for this project.

Test items
In addition to the trained items, test tasks (conducted on
the fifth day) required development of five sets of 24
untrained novel words for each writing system.
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Untrained words all comprised the same CVCVC struc-
ture as trained words, and each set was group-wise
matched to trained words on letter frequency. The first
four sets of untrained words were created for the visual
lexical decision test task. The first set comprised novel
words that transposed the second and third consonants
of a trained word (TL-C), while the second set comprised
novel words that replaced the second and third conso-
nants of a trained word with different consonants from
the alphabet (RL-C). The third set comprised novel
words that transposed the first and second vowels of a
trained word (TL-V), while the fourth set comprised
novel words that replaced the first and second vowels
with different vowels from the alphabet (RL-V).1 The
fifth set of untrained words was used to assess general-
isation performance in reading aloud.

In designing the stimuli, we took great care to make
sure that the similarity between test stimuli and trained
stimuli was equivalent across sparse and dense orthogra-
phies. We used the Match Calculator (Davis, 1999) to
assess the degree of similarity between trained and
test items on a number of different input coding
schemes. Each comparison generated a number
between 0 and 1, where 0 indicated total dissimilarity
and 1 indicated a perfect match. It is evident from the
average match scores provided in Table 1 that there
were no differences in trained–test item similarity
across the two orthographies. This tight control was
essential so that any differences in lexical decision per-
formance could be attributed to orthographic density,
rather than low-level differences in discrimination
difficulty across sparse and dense orthographies as a
result of higher orthographic overlap with trained and
untrained items.

Procedure

Each participant was trained on the novel words from
one writing system over four days and tested on the
fifth day. The correct response was given as feedback
on each trial for training tasks; no feedback was given
on test tasks.

During Day 1, participants completed three tasks, with
each task comprising three runs. The first task was
phonic training. For two runs, participants were
exposed to individual letters and their sounds and
asked to repeat each sound aloud. In the third run, par-
ticipants were presented with the letter and had to
produce the sound. The second task was reading
aloud; participants saw each novel word and were
asked to read it aloud. The third task was orthographic
search; participants heard a novel word and selected
its visual form from a grid of all 24 novel words. During
Days 2–4, participants completed three blocks of training
each day. Blocks consisted of three repetitions of reading
aloud and one repetition of orthographic search. Train-
ing on each day took approximately 75 minutes.

On the fifth day, participants completed four test tasks
in a fixed order. These included tasks similar to the
reading aloud and orthographic search tasks practiced
in training; however, each stimulus was presented once
per task, and participants received no feedback on the
correct response. In addition, participants completed
visual lexical decision and generalisation. In the lexical
decision task, participants were presented with letter
strings and asked to decide whether they were words
that they had learned.2 The letter strings included
trained words, and the four sets of untrained novel
words (TL-C, RL-C, TL-V, RL-V). Trained words were
repeated four times, so that “yes” and “no” responses
were balanced. Trained items were included as fillers in
order to provide a correct “yes” response, and also to
measure participants’ overall recognition of trained
items. Untrained items were included to measure the
transposed letter effect (shown by the difference in per-
formance for TL and RL foils), reflecting the degree of
position uncertainty in each orthography. In the general-
isation task, participants were asked to read the fifth set
of untrained novel words aloud. This allowed us to assess
the extent to which participants had extracted under-
lying spelling–sound regularities from training on the
novel words.

Results

Data from one participant were removed from all ana-
lyses due to poor learning of the trained items (63%
correct on reading aloud test; 49% correct on “yes”

Table 1.Match Calculator (Davis, 1999) statistics displaying mean
orthographic overlap between trained and untrained items.

Orthography Absolute

SOLAR
(Spatial
Coding)

Overlap
Open
Bigram

SERIOL
Open
Bigram

Binary
Open
Bigram

Dense 0.13 0.19 0.04 0.04 0.04
Sparse 0.13 0.19 0.04 0.03 0.04

Figure 1. Examples of stimuli in dense and sparse orthographies.
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response in lexical decision test). Data were analysed
using analyses of variance (ANOVA) on accuracy and
response times (RTs), although we note that previous
studies in which adults have learned to read in an artifi-
cial script have typically focused only on accuracy (e.g.
Taylor et al., 2011, 2017). Spoken responses were hand-
marked for accuracy and RT by a research assistant
naïve to the purpose of the study using CheckVocal soft-
ware (Protopapas, 2007). Analyses were conducted on
by-subject (F1) and by-item (F2) means. Results were
interpreted as significant when effects held across both
F1 and F2 analyses. Data and analysis scripts are available
in the OSF storage for this project.

Training data (Days 1–4).

Phonic training (Day 1)
The analysis of phonic training data considered perform-
ance in the third run of phonic training, and included
Orthography (sparse vs dense) as a factor. The analysis
of accuracy data revealed no difference between
sparse (M = 0.47, SE = 0.04) and dense (M = 0.42, SE =
0.04) writing systems, F1(1, 45) = 0.62, p = 0.43; F2(1, 32)
= 0.71, p = 0.40. Similarly, there was no difference in RTs
between sparse (M = 2177 ms), and dense (M =
1957ms) writing systems, F1(1, 45) = 1.37, p = 0.25; F2(1,
32) = 1.76, p = 0.19. These data provide confidence that
there were no initial differences between the language
groups on ability to learn the artificial alphabets.

Reading aloud (Days 1–4)
The analysis of reading aloud training data considered
Orthography (sparse vs dense) and Day as factors.
Figure 2 provides a visual representation of the data.

For accuracy, there was a main effect of Day, F1(3,
135) = 212.53, p < .001; F2(3, 138) = 1531.50, p < .001,
with performance becoming more accurate over time.
Although Figure 2 suggests slightly higher accuracy for
the dense group, neither the effect of Orthography,
F1(1, 45) = 3.17, p = .08; F2(1, 46) = 16.29, p < .001, nor
the interaction between Day and Orthography, F1(3,
135) = 0.98, p = .41; F2(3, 138) = 6.14, p < .001, was
reliable across by-subject and by-item analyses.

For RTs, there was a main effect of Day, F1(3, 135) =
150.42, p < .001; F2(3, 138) = 881.99, p < .001, with faster
responses emerging over time. The RT data showed no
effect of Orthography, F1(1, 45) = 0.24, p = .63; F2(1, 46) =
3.53, p = .07, and no interaction between Day and Ortho-
graphy, F1(1, 135) = 0.28, p = .84; F2(1, 138) = 5.09, p < .01.

Orthographic search (Days 1–4)
The analysis of orthographic search training data con-
sidered Orthography (sparse vs dense) and Day as

factors. Figure 3 provides a visual representation of the
data. The accuracy analysis revealed an effect of Day,
F1(3, 133) = 16.62, p < .001; F2(3, 138) = 105.26, p < .001,
as accuracy increased over time. Although Figure 3
again suggests slightly higher accuracy for the dense
group, there was no effect of Orthography, F1(1, 43) =

Figure 3. Mean accuracy and response times for each day of the
orthographic search training task. Error bars display one standard
error from the mean, calculated for between-subjects designs.
The data for each day are averaged across three repetitions.

Figure 2. Mean accuracy and response times for each day of the
reading aloud training task. Error bars display one standard error
from the mean, calculated for between-subjects designs. Data
are averaged across three repetitions of the task on Day 1 and
nine repetitions of the task on Days 2–4.
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0.54, p = .47; F2(1, 46) = 6.95, p < .05, and no interaction
between Day and Orthography, F1(3, 133) = 0.49, p
= .69; F2(1, 138) = 3.40, p < .05, that was reliable across
by-subject and by-item analyses.

For RTs, there was a main effect of Day, F1(3, 133) =
100.50, p < .001; F2(3, 138) = 391.89, p < .001, as latencies
decreased over time. The RT data showed no effect of
Orthography, F1(1, 43) = 0.65, p = 0.43; F2(1, 46) = 1.16,
p = 0.29, and no interaction between Day and Orthogra-
phy, F1(3, 133) = 0.77, p = 0.51; F2(3, 138) = 2.12, p = 0.10.

Overall, training data suggest that trained words were
learned to a high degree of accuracy, with no reliable
differences across sparse and dense orthographies.3

Testing data (Day 5)

Reading aloud
The analysis of reading aloud test data included Ortho-
graphy (sparse vs dense) and Lexical Status (trained vs
untrained) as factors. Figure 4 provides a visual represen-
tation of the data.

The analysis of accuracy revealed a significant effect of
Lexical Status, F1(1, 45) = 139.97, p < .001; F2(1, 92) =
450.67, p < .001, with trained items read aloud more
accurately than untrained items. There was also a signifi-
cant effect of Orthography, F1(1, 45) = 12.17, p < .01; F2(1,
92) = 50.96, p < .001, with higher accuracy in the dense
orthography. However, these main effects were
qualified by an interaction, F1(1, 45) = 11.63, p < .01;
F2(1, 92) = 37.02, p < .001. This interaction revealed that

whilst performance on trained items did not differ as a
function of Orthography, F1(1, 45) = 0.75, p = .39; F2(1,
46) = 1.54, p = .22, performance on untrained items was
more accurate for the dense than the sparse orthogra-
phy, F1(1, 45) = 13.19, p < .001; F2(1, 46) = 53.32, p < .001.

The analysis of RT revealed an effect of Lexical Status,
F1(1, 44) = 160.38, p < .001, F2(1, 92) = 331.67, p < .001,
with longer latencies for untrained than trained items.
However, there was no effect of Orthography, F1(1, 44)
= 0.03, p = .87; F2(1, 92) = 0.001, p = 0.98, and no inter-
action between these factors, F1(1, 44) = 0.01, p = .94;
F2(1, 92) = 0.20, p = 0.66.

Orthographic search
The analysis of orthographic search test data included
Orthography (sparse vs dense) as a factor. The analysis
of accuracy revealed no significant difference between
sparse (M = 0.97, SE = 0.07) and dense (M = 0.98, SE =
0.05) orthographies, F1(1, 45) = 0.17, p = .69; F2(1, 46) =
0.47, p = 0.50. Similarly, the analysis of RT revealed no sig-
nificant difference between sparse (M = 6851) and dense
(M = 7131) orthographies, F1(1, 45) = 0.28, p = .60; F2(1,
46) = 0.61, p = 0.44.

Lexical decision
Analysis of the “yes” response included Orthography
(sparse vs dense) as a factor. The analysis of accuracy
revealed no difference in recognition of targets learned
in sparse (M = 0.95, SE = 0.01) and dense (M = 0.94, SE =
0.02) orthographies, F1(1, 45) = 0.21, p = 0.65; F2(1, 46) =
1.07, p = 0.31. Similarly, the analysis of RT revealed no
difference in the speed with which targets learned in
sparse (M = 3502 ms) and dense (M = 3635 ms) orthogra-
phies were accepted, F1(1, 45) = 0.14, p = 0.72; F2(1, 46) =
0.83, p = 0.37.

Analysis of the “no” response included Orthography
and TL status (TL vs RL) as factors. Figure 5 provides a
visual representation of the data. The analysis of accuracy
revealed an impact of TL status, with lower accuracy in
rejecting TL foils than RL foils, F1(1, 45) = 50.29, p < .001;
F2(1, 46) = 31.29, p < .001. There was also a main effect
of Orthography, F1(1, 45) = 5.63, p < .05; F2(1, 46) =
58.72, p < .001, with accuracy in the dense orthography
higher than in the sparse orthography. Critically,
however, these main effects were qualified by a signifi-
cant interaction, F1(1, 45) = 8.33, p < .01; F2(1, 46) = 5.09,
p < .05, which indicated a larger TL effect in the sparse
orthography than in the dense orthography.

The analysis of RT revealed no effect of TL status, F1(1,
45) = 8.11, p < .01; F2(1, 46) = 3.32, p = .07, no effect of
Orthography, F1(1, 45) = 0.001, p = 0.98; F2(1, 46) =
0.001, p = 0.99, and no interaction between TL status

Figure 4. Mean accuracy and response times for reading aloud
trained and untrained stimuli on Day 5. Error bars display one
standard error from the mean, calculated for between-subjects
designs.
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and Orthography, F1(1, 45) = 0.41, p = 0.53; F2(1, 46) =
0.09, p = 0.77.

Discussion

Substantial research suggests that letter position is rep-
resented flexibly in skilled reading (e.g. Perea & Lupker,
2004; Schoonbaert & Grainger, 2004). However, recent
research in Hebrew (Frost, 2012; Velan & Frost, 2011)
and Korean (Rastle et al., 2019) suggests that this may
not be a universal property of reading, but rather may
depend on the orthographic density of a writing
system. We sought to investigate the impact of ortho-
graphic density on the emergence of letter position
coding using an artificial language learning paradigm.
Over four days, participants learned to read novel
words printed in an artificial orthography that was
sparse (no anagrams) or dense (many anagrams). On
the fifth day, they were tested in a variety of ways on
their knowledge of the artificial orthographies. We
assessed the precision of letter position coding
through a lexical decision task, in which participants
were required to accept trained words but to reject trans-
posed-letter and replaced-letter foils. We took the size of
the transposed-letter effect on rejection decisions as an
index of flexibility in position coding (e.g. Andrews,
1996), and expected this to be larger in the sparse ortho-
graphy than in the dense orthography.

Results revealed the predicted difference in the size of
the transposed-letter effect on rejection decisions across
sparse and dense orthographies. Though participants
across the two writing systems learned trained words
to the same high degree of accuracy, the underpinning
orthographic representations clearly differed. Critically,
participants who learned the sparse orthography were
more likely to accept the transposed-letter foils as
trained words (relative to a replaced-letter control)
than participants who learned the dense orthography.
This result indicates that participants’ emerging ortho-
graphic representations were more precisely coded for
letter position when they learned to read the dense
orthography than the sparse orthography. We note
that these findings arose on accuracy rather than RT. It
is not surprising that findings should be confined to
accuracy given the low level of experience that partici-
pants had with the novel alphabets. Indeed, the fact
that “no” decisions in the lexical decision task hovered
around 5000 ms suggests that reading of these alpha-
bets was not fully automatized. The critical point is that
there is no evidence of a speed-for-accuracy trade-off
that would undermine the result on accuracy. If anything,
the RT data go in the same direction as the accuracy data
(i.e. larger transposed-letter effect in the sparse
orthography).

These results are consistent with previous cross-lin-
guistic studies demonstrating reductions in transposed-
letter effects in orthographically-dense scripts such as
Hebrew (Velan & Frost, 2007, 2011) and Korean (Lee &
Taft, 2011; Rastle et al., 2019). However, our findings
are particularly powerful because the impact of ortho-
graphic density on letter position coding cannot be
attributed to other confounding language characteristics
or to variations in participant groups across languages.
These results support Frost’s (2012) claim that the flexi-
bility of letter position coding in reading arises as a con-
sequence of the statistical structure of a writing system.
However, a deeper question relates to how theories of
reading acquisition might account for the impact of
orthographic density on flexibility of letter position
coding.

Several theories of reading acquisition highlight the
linguistic environment as a key factor in forming
optimal word representations. The amalgamation
theory (Ehri & Wilce, 1980) and the lexical tuning hypoth-
esis (Castles, Davis, Cavalot, & Forster, 2007) both
propose that readers develop more precise represen-
tations of words with a high neighbourhood density,
due to the increased risk of confusability. This prediction
has been supported in masked-priming studies showing
that words in dense neighbourhoods show reduced sub-
stituted letter priming and transposed letter priming

Figure 5.Mean accuracy and response times for the visual lexical
decision test task on Day 5. Error bars display one standard error
from the mean, calculated for within-subject designs (Loftus &
Masson, 1994). Error bars display within-subject variability
because the comparison of interest is the size of the trans-
posed-letter effect within each orthography.
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than words in sparser neighbourhoods (Castles et al.,
2007; Forster, Davis, Schoknecht, & Carter, 1987;
Kinoshita, Castles, & Davis, 2009; Perea & Rosa, 2000).
Our work suggests that the proposals of these theories
regarding flexible tuning within a language might also
be invoked to understand cross-linguistic differences.
Readers of dense orthographies may require more
precise tuning of word representations than readers of
sparse orthographies, resulting in lower tolerance to
transpositions.

Similarly, while our findings are inconsistent with the
proposal that letter position flexibility arises solely as a
result of low-level visual or neurobiological phenomena,
we can envisage ways in which these theories might
accommodate an influence of orthographic density. For
example, the local combination detector model
(Dehaene et al., 2005) proposes that detector sizes are
larger for writing systems in which the reader is reliant
on larger orthographic units (e.g. languages with low
grapheme-phoneme transparency). This proposal offers
a potential way forward for thinking about the impact
of orthographic density on position flexibility, as in
dense orthographies the reader may need to consider
positional information from a larger window of letters
in the word in order to reliably differentiate between
anagrams.

However, we believe that the full range of the results
observed are most compatible with the dual-pathway
model of Grainger and Ziegler (2011). This model pro-
poses that skilled readers use coarse- and fine-grained
codes in parallel in order to decode written words. The
coarse-grained route identifies letter combinations in
the absence of precise positional information to
provide a fast-track to semantic information. In contrast,
the fine-grained route is more sensitive to the precise
ordering of letters. The precision of orthographic infor-
mation along the fine-grained pathway permits
mapping onto phonological information as well as
chunking of frequently-occurring contiguous letter com-
binations, such as morphemes. It seems plausible that
during reading acquisition, learned representations of
words are tuned to reflect an optimal balance of
coarse-grained and fine-grained processing. If so, then
readers of dense orthographies may be less able to
utilise coarse-grained information, as the lack of position
specificity would be inefficient for identifying words with
many orthographic neighbours. Rather, they would need
to develop greater reliance on the fine-grained pathway.
In contrast, readers of sparse orthographies with few
orthographic neighbours would have more weight
assigned to less precise representations as there is a
much lower chance of identifying a transposed-letter
neighbour in error. The reliance on less precise

representations in orthographies with fewer ortho-
graphic neighbours would result in larger transposed-
letter effects in sparse orthographies, as observed in
the current work.

This account suggests that reading acquisition is
characterised by a process of learning the degree of pre-
cision that is required for efficient word recognition. The
optimal degree of precision may vary locally across
different types of words, and may vary cross-linguistically
based on orthographic density, as the present results
suggest. This interpretation is supported by research
suggesting that the magnitude of the transposed-letter
effect increases through the period of reading acquisition
(Ziegler, Bertrand, Lété, & Grainger, 2014 in French;
Colombo, Sulpizio, & Peressotti, 2017 in Italian). This evi-
dence stands in contrast to the predictions of the lexical
quality hypothesis (Perfetti, 2007), stating that the
process of reading acquisition is characterised by
increased fine-tuning of representations (i.e. greater pre-
cision) through the accumulation of print experience.

One problem with this account based on the dual-
pathway model (Grainger & Ziegler, 2011) is that seems
to allow too many degrees of freedom. That is, one
might argue that the model allows the researcher to
explain any number of effects simply by suggesting
posthoc that coarse-grained or fine-grained processing
dominated. The account would be more persuasive if
we had additional, independent evidence that partici-
pants in our dense orthography condition were more
reliant on fine-grained processing. Remarkably, data
from the generalisation test task provides this indepen-
dent evidence. Results indicated that the trained words
were learned to the same high degree of accuracy
across writing systems. Yet, when participants were
asked to read aloud untrained words using the same
symbols, participants who learned the dense script
showed a substantial advantage. This suggests that par-
ticipants who learned the dense orthography developed
more componential representations, reflecting greater
fine-grained letter-to-sound knowledge, than partici-
pants who learned the sparse orthography. Once again,
the evidence indicates that the nature of the writing
system impacted on how the words were learned.

The introduction of the artificial orthography training
paradigm has allowed us to study the unique impact of
orthographic density on the acquisition of orthographic
representations. Due to associations between ortho-
graphic density and other factors in existing writing
systems, this type of highly-controlled study is only poss-
ible in a simulated environment. However, there are
clearly limitations of these paradigms, introduced
largely due to constraints on what participants are able
to learn over a reasonable time period. Further, we
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have simplified our vocabularies in many ways to facili-
tate the learning task (e.g. use of a strict syllabic structure
for all items), and to ensure perfect matching across
orthographies. These simplifications may have had unin-
tended consequences. For example, while participants
across orthographies differed substantially in their treat-
ment of untrained items in the lexical decision and
reading aloud tasks, we observed no differences across
orthographies in the speed or accuracy with which
trained items were processed. We believe that the data
from untrained items indicates that the writing systems
were learned in different ways, but we would not like
to speculate that writing system has no bearing on the
speed or accuracy with which words are processed
once learned. It may be that the null effect of orthogra-
phy on the processing of trained items reflected the
very tight, artificial matching across orthographies, or
that our tasks were insufficiently sensitive to detect
effects on trained items (see also Footnote 3). These
arguments suggest that while artificial language
studies of this nature form an important part of the evi-
dence base, they must be interpreted as complementary
to studies of existing languages and writing systems.

Overall, our results provide a strong demonstration of
the impact of the orthographic density of a writing
system on the precision of orthographic representations.
Using an artificial language approach, we varied ortho-
graphic density across two artificial writing systems,
while controlling all other stimulus and participant
factors that confound this comparison in studies using
natural languages. Our results challenge existing cogni-
tive and neurobiological models of position coding in
reading, and support the argument put forward by
Frost (2012) that orthographic representations are
shaped by the statistical structure of the writing system
one learns to read (see also Lerner et al., 2014). We
look forward to using this method to delineate how
the complex associations between orthographic, phono-
logical and semantic information across the world’s
writing systems shape the acquisition of the reading skill.

Notes

1. We used non-adjacent transpositions of consonants and
vowels for the reason that in our alphabets, the symbols
associated with consonants and vowels only occur in
certain positions (e.g. vowel symbols do not occur in
the third position). We had no predictions about conso-
nant-vowel status on the transposed-letter effect, and
note that this comparison in any case is confounded
with position of disrupted letters.

2. We chose to investigate transposed letter phenomena
using standard lexical decision rather than masked
priming because we judged that this would be more

suitable for use with an artificial orthography training
paradigm. Though there is ample evidence that partici-
pants can discriminate trained from untrained stimuli
in such paradigms (e.g. Taylor et al., 2017), we are
unaware of any evidence suggesting that trained items
would yield masked repetition priming effects.

3. We note that there was some indication from by-item
analyses that the dense orthography may have been
easier to learn for some of the participants (although per-
formance converged by the end of training). This may
suggest that there are meaningful individual differences
in how these types of writing systems are learned. Future
higher-powered studies may wish to investigate this
possibility.
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