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Almost all of the theoretical and empirical work on reading aloud has considered only the reading
of monosyllables, and so the special problems which arise when one is attempting to give an account
of how polysyllabic words and nonwords are read aloud have been thoroughly neglected. Here we
begin to remedy this neglect with an exploratory study of this issue from the viewpoint of the
dual-route theory of reading. We propose an explicit set of nonlexical rules for the orthographic—
phonological translation of disyllabic letter strings which includes procedures for assigning stress and
reducing vowels. We show that this set of rules predicts well how people assign stress to disyllabic
nonwords and that the naming latencies for English disyllabic strings whose stress violates that
predicted by these rules are longer than the latencies for words which obey these rules, especially
when the words are low in frequency. We conclude with a consideration of how a particular
dual-route computational model of reading, the DRC model, might be extended so as to account for
these findings. © 2000 Academic Press
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Research investigating the processes imvith a heightened interest in realizing verbal
volved in print-to-sound translation has flourtheories as computational models. A number o
ished over the past 25 years, yielding empiricalomputational models of reading aloud are cur
data which have identified a number of varirently being studied (e.g., Coltheart, Curtis, At-
ables that seem to figure heavily in this procesdns, & Haller, 1993; Plaut, McClelland, Sei-
(e.g., regularity, consistency, frequency). Adenberg, & Patterson, 1996; Zorzi, Houghton
number of theories of reading aloud which seek Butterworth, 1998).
to explain these data have peen de_veloped, f’i_nd\/irtually all of this theoretical, empirical, and
these theories have grown increasingly specifigomputational modeling work has focused or
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syllables, any theory or model with aspirations Print

to completeness will sooner or later have to l
confront the problems which arise when poly- Visual Feature
syllables are considerédn this work, we begin Units

to consider how these problems might be ad- H
dressed by one theory of reading in particular,
the dual-route theory (e.g., Coltheart, 1978; Letter Units
Forster & Chambers, 1973; Patterson & Mor-
ton, 1985; Patterson & Shewell, 1987). We fur- /
ther try to relate our conclusions to a particulal  ornographic
implementation of the dual-route theory, thg  lexicon
DRC model (Coltheart et al., 1993; Coltheart & [) Grapheme-Phoneme

Correspondence

Rastle, 1994; Rastle & Coltheart, 1998, Y Rules

1999a,b) Phonological
v Lexicon
THE DUAL-ROUTE THEORY \ /

OF READING
Phoneme Units —e Inhibitory

The c_entral tenet of the dual-route the_ory of — > Excitatory
reading is that two procedures are required for
the correct print-to-sound translation of excep- Speech
tion words and nonwords. While correct pro-
nunciation of exception words requires a lexical
lookup procedure, correct pronunciation of non-
words requires a nonlexical, rule-governed, presee Jared, 1997, who reported a consistenc
cedure. Application of the nonlexical procedureffect for high-frequency words), because (a
to an exception word results in a regularizatiothe size of the regularity effect is determined, in
error (e.g., pronouncing PINT as if it rhymedpart, by the speed at which lexical information
with MINT), and similarly, application of the is activated relative to nonlexical information
lexical procedure to a nonword results in a@nd (b) the speed at which lexical information is
lexical capture (e.g, pronouncing STARN asictivated is determined, in part, by word fre-
START). Regular words can be read aloud bguency.
either procedure, though of course by different Coltheart and his colleagues (Coltheart et al.
means. 1993; Coltheart & Rastle, 1994) sought to spec

Exception words are read aloud more slowlyfy this theory of reading further by implement-
than regular words, according to the theorying it as a computational model, the DRC
because they generate conflicting informatiomodel. Its architecture is shown in Fig. 1, and
between lexical and nonlexical procedured)as been described in detail by Coltheart an
while regular words do not. The theory predict&Rkastle (1994) and Rastle and Coltheart (199¢
an increase in the size of the exceptionality codt999a,b).
as word frequency decreases, as is the case iPAs shown, the DRC model utilizes a lexical
reading aloud (e.g., Paap & Noel, 1991; Seiderprocedure and a nonlexical procedure for the
berg, Waters, Barnes, & Tanenhaus, 1984; bapnsemantic translation of print to sound (s

third procedure via a semantic system has nc

! Ans, Carbonnel, and Valdois (1998) have recently rebeen implemented). These procedures share
ported the development of a computational model of Frencfeature identification system, a letter identifica-

polysyllabic word reading. However, the difficulty which tion system and a phoneme system The lexic:
arises in developing a computational model of English— ’ ’

namely, the placement of stress—does not arise in FrenJﬁ?Ute houses orthographic and phonological er

because French does not have lexical stress (see e.g., BdkeS for every monosyllable in English, and the
man, 1986). nonlexical route operates by applying a set o

FIG. 1. The DRC model.
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grapheme-to-phoneme correspondence (GP@)ction is needed, however, in order to classify
rules serially, letter by letter, across the itemwords as regular or irregular on the basis o
Processing in the lexical route of the model isheir suprasegmental information.
graded, cascaded, and fully interactive. Developing rule systems for these procedure
Coltheart and Rastle have reported a numbéas been a focus of linguistic research for man
of the model’s successful simulations, includingyears (e.g., Baker & Smith, 1976; Baptista,
the regularity effect and its interaction with1984; Chomsky & Halle, 1968; Fudge, 1984;
frequency and position of irregularity, theLiberman & Prince, 1977; Smith & Baker,
pseudohomophone effect and its modulation b§976; Trammell, 1978; Williams, 1987). How-
base-word orthographic similarity, homophonever, none of these rule systems is particularl
priming, and the length effect in nonword readsuitable for the nonlexical component of a dual-
ing. Simulation work on reading aloud by theroute model. Much of this literature has beer
model has so far been restricted to monosyllabmoncerned with the assignment of suprasegmel
word and nonword reading because, althoudial information to a prespecified phonological
the nonlexical route can translate a polysyllabicepresentation, not an orthographic one. Thi
item into a string of phonemes, it cannot assigrule system that we seek, however, is one the
stress or reduce vowels appropriately. Hencéranslates the orthographic representation of
pronunciations of polysyllabic letter stringspolysyllabic word to a complete phonological
cannot be exactly simulated by the present formepresentation, containing both segmental an
of the model. suprasegmental information. It should be appli
cable to words and nonwords alike and so mus
DUAL-ROUTE THEORY AND THE make use only of the letters, graphemes, an
PROBLEM OF POLYSYLLABIC WORDS phonemes in the item. Many of the rule system:
If dual-route theory is to be extended beyondonsidered previously in linguistic research
the monosyllabic domain, then the readindpave required information such as etymology
aloud of polysyllables, which requires stresand syntactic class and so are inappropriate fc
assignment and vowel reduction, must be exise with nonwords.
pressible as a function of lexical and nonlexical Whether such a nonlexical procedure for
procedures. This task is easily accomplished asading aloud English polysyllabic words can
far as the lexical procedure is concerned; inbe developed at all is unclear. While generating
cluding polysyllabic words in an orthographicsegmental information for polysyllabic words
input lexicon and a phonological output lexicorseems a straightforward extension of our worl
poses no problems. However, polysyllabién defining the relationship between orthogra-
words do pose special problems for the nonlexphy and phonology for monosyllables, the gen:
cal procedure, specifically in explaining howeration of suprasegmental information seem
this rule-based procedure, when translatingnore challenging. Consider the following state-
polysyllabic items from print to sound, assignsnents.
stress and reduces vowels appropriately.
Whatever the means by which this might be
done by rule, it seems certain that some English
polysyllabic words would violate whatever In fact lexical _knowledge is the only re_liable source
rules for stress assignment and vowel reduction 1 Sess assignment, for languages like ltalian and
. . English where stress is not predictable. (Colombo &
are used by the nonI_eX|caI route. One ml_ght thus Tabossi, 1992, p.322)
expect that the reading aloud of stress-irregular
words will be subject to an exceptionality costGiven these views, how much of English stres:
particularly if the words are of low frequency—assignment can be predicted by nonlexical rule
just as for words with segmental irregularitiesFor the purposes of this initial investigation, we
A system of nonlexical rules which describesvill consider this question only in relation to
procedures for stress assignment and vowel rdisyllabic items.

... it having been generally held that [English word
stress] follows no rules. (Kingdon, 1958, p.xii)



READING DISYLLABLES 345

It turns out that English stress can be prepeared in the error data but not in the latency
dicted to a large degree by applying just ondata).
very simple rule: assign first syllable stress to Monsell et al. (1989, Experiment 3), in their
all disyllabic items. Approximately 83% of di- investigation of the locus of frequency effects,
syllabic English words are pronounced withdid a similar experiment in English. Because
first syllable stress (CELEX Lexical Databasemost disyllabic English words are pronouncec
Baayen, Piepenbrock, & van Rijn, 1993), and s@iith first syllable stress, Monsell et al. classified
the nonlexical procedure of assigning first sylthese words as regular and classified disyllabi
lable stress to every disyllabic item will produceyords with second syllable stress as irregular
stress assignment that is correct far aboveneir experiment dealt with three variables—
chance levels. Disyllabic words in Englishyorg frequency, task type, and stress regularity
might then be considered regular if they argyt primary interest here is the effect of stress
stressed on the initial syllable and irregular it g jarity and its interaction with frequency in
they are stressed on the final syllable. This typg o naming task. Although it appears from their
of statistically based rule, according to whichjy 7 44 there was an interaction betweer
stress regularity Is determined by a single fa%ese variables in the predicted direction, nei

about the distribution of stress patterns in th%ter the main effect of stress regularity nor the
i

language, has been considered a number . .
. interaction between stress regularity and fre
times (e.g., Brown, Lupker, & Colombo, 1994; S .

quency reached significance by subjects and b

Colombo, 1992; Colombo & Tabossi, 1992; A
-items:

Monsell, Doyle, & Haggard, 1989). Some evi- . . :
dence already exists which suggests that readersBrOWn et al. (1994) also investigated the in-

appeal to this tvpe of rule in readin alouoteraction of stress regularity and frequency
pgﬁlsyllabic itemgp g (though not for the purposes outlined here) in a

Colombo (1992) used this type of rule in aexperiment in which they used the stimuli de-

demonstration of regularity effects in reading'9ned by Monsell et al. (1989). Unlike Monsell
ltalian polysyllabic words. Although there are®t @l (1989), they reported a main effect of
no irregular monosyllabic words in Italian, thereStress regularity and a nearly significant inter-
are irregular Italian polysyllabic words, becaus@ction between stress regularity and frequenc
the application of stress in Italian is not gOV_Subjects read aloud stress-irregular words mor
erned solely by rule. While most Italian wordsSlowly than stress-regular words, particularly
are stressed on the penultimate syllable (e.qg., taen the words were of low frequency. Unfor-
‘china), approximately 30% are stressed on thénately, neither item analyses nor item datz
antepenultimate syllable (e.g., ‘mac china)were reported, so it is not clear whether the
Based on this distribution, Colombo (1992) reaeffects they observed were produced by only :
soned that for three-syllable words, penultimatemall set of items in the stimulus set, whethe
syllable stress can be thought of as regulathey could be generalized to a different set o
whereas antepenultimate stress can be thougdtems, or why they did not produce equivalent
of as irregular. On manipulating word fre-effects in the Monsell et al. (1989) study.

quency and stress regularity, Colombo (1992) Thus, we designed a similar experiment tc
found the standard regularity by frequency ininvestigate whether the standard regularity b
teraction. While the regularity manipulation didfrequency interaction could be produced using
not affect high-frequency words, irregularlydifferent set of English disyllabic items classi-
stressed words of low frequency were sloweled as stress regular or stress irregular based ¢

compared with low-frequency regularlythe fact that most disyllabic items are given
stressed words (see also Colombo, 1988, @&$tial stress.

cited in Colombo, 1991, for a similar experi-
ment involving lexical decision in which a zwe are grateful to Stephen Monsell for providing to us
stress regularity by frequency interaction apthese data.
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EXPERIMENT 1 TABLE 1

If dual-route theory is to be extended to poly-. Naming Latency (ms) and Percentage of I_Error as Eunc
llabic word reading. then stress re ularittlons of Word Frequency and Stress Regularity by Subject
syllabic wo 9 : 9 ¥Item Data in Parentheses)
must be expressed by nonlexical rule. If regu
larity can be determined by examining the dis- Low frequency  High frequency
tribution of stress patterns in the language in
this way, then final syllable stressed Englisiyaming Latency

words should show a cost of irregularity, and | "egular stress 554 (553) 531 (531)

. “Regular” stress 557 (557 528 (529
this cost should be greater for Iow-frequenc¥,ercegtage of error (557) (529)
words than for high-frequency words. “Irregular” stress 3.5(3.3) 0.4 (0.4)

“Regular” stress 4.1(4.1) 0.4 (0.4)
Method

SubjectsSubjects were 18 first-year Macqua-
rie University psychology students. All had nor-  Procedure. Subjects were seated approxi-
mal or corrected-to-normal vision and were namately 16 in. from the monitor and fitted with
tive speakers of Australian-English. Subjectthe voice key headset. They were instructed t
received an introductory course credit for theiread aloud the words and nonwords as quickl
participation. and as accurately as possible. Subjects wel

Stimuli and apparatusOne-hundred-twenty given 10 practice trials and then named the 24
disyllabic words were selected from the MRGarget and filler items. The experimenter re-

Psycholinguistic Database (Coltheart, 1981}orded errors for word targets by hand.
Sixty of these words were stressed on the first
syllable (“regular”) and 60 were stressed on thEesults
final syllable (“irregular”). Sixty of the words  Reaction times for word targets were re-
had Kuera and Francis (1967) frequencies ovetorded and latencies for errors and spoiled trial
100 occurrences per million, and 60 of thgbecause of voice key failure) were discarded
words had frequencies between 1 and 10 peil remaining reaction times were winsorized to
million. Word frequency and stress regularitythe second standard deviation boundary. Con
were varied in this way so that in each of fouplete item data are contained in Appendix A.
cells of the design there were 30 disyllabiSubject and item data are shown in Table 1.
words. None of the words had irregular mono- Two separate ANOVAs were performed on
syllabic GPCs. The four lists of items werethe subject and the item data. Stress regularit
groupwise matched on number of letters and cand word frequency were treated as repeate
neighborhood size. Stimuli are shown in Apfactors in the subject analysis; both of these
pendix A. variables were treated as between-items facto
One-hundred-twenty nonwords were addeih the item analysis.
as fillers in order to maximize use of the non- Results showed a main effect of frequency, a
lexical route, thereby emphasizing the conflichigh-frequency words were read aloud more
for low-frequency irregularly stressed wordsquickly than low-frequency words;,(1,17) =
All nonwords were phonotactically legal. 746, p < .05 MSE = 1616.37,
Presentation of words and nonword fillerd,(1,116) = 21.02, p < .0001, MSE =
was controlled and randomized for each subje®93.37.There was no effect of stress regular-
using the DMASTR software (Forster & For-ity, however, as initially stressed words were
ster, 1990) on a 486 PC. Naming latencies wergot named any faster than finally stresse
recorded with the use of a voice key headset thatords, F,(1,17) = .00, n.s., F,(1,116) =
fit each subject’s head to ensure that the micro®7, n.s. Finally, there was no interaction be-
phone remained at a constant distance from tteen stress regularity and word frequency, a
subject’s mouth throughout the experiment. the effect of stress regularity was the same fo
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low-frequency words as for high-frequency A SET OF NONLEXICAL RULES FOR
words, F,(1,17) = 1.43,n.s.,F,(1,116) = READING DISYLLABIC WORDS
.25,n.s. AND NONWORDS ALOUD

Errors were analyzed in the same way as was As discussed, previous linguistic research ha

reaction time. A main effect of word frequencyg(_:‘nera”y considered the problem of stress as
emerged,F.(1,17) = 27.54, p < .0001, ggnment with respect to a prespecified phono
MSE = .00059, F»(1,116) = 13.22,p < logical representation. Thus, in designing a hon
.0001,MSE = .817, aghere were more errors jgyica| procedure for reading aloud disyllabic
for low-frequency words than for high-fre-jtems, we might first develop appropriate non-
quency words. As in the latency analysis, thergyical rules for deriving a phonological repre-
was no effect of stress regularit,(1,17) =  sentation from orthography and then develop :
.22,n.s.,F5(1,116)= .16,n.s. Similarly, there secondary procedure for assigning stress ar
was no interaction between word frequency angducing vowels from this phonological repre-

stress regularity, F,(1,17) = .17, n.s., sentation.

F,(1,116)= .16, n.s. However, depending on the extent to which
regularities in the mapping between orthogra:

Discussion phy and the placement of stress can be ident

fied, it may be possible to develop a single

Neither the latency data nor the error data . . .
. rr%)rocedure which derives both a phonologica
produced an effect of stress regularity or a

interaction between word frequency and stre representation and a stress marker from the o
q y %ﬁographic string. Recently, Kelly, Morris, and

regulanty. Thus, it appears that wh|lg t.he NNy errekia (1998) have tried to identify such reg-
lexical rule based on a single statistical fact

X ularities in the mapping between orthography
about the language leads to psychologically "®3hd stress placement. They identified particula

classifications of stress regularity in Italian (Co'orthographic segments at the ends of disyllabi

lombo, 1992), it does not lead to such classifiz,q qq which, they proposed, “mark” the place-
cations in Englisti. If stress assignment andmen of stress in either the first or second syl
vowel reduction procedures can be describggpie An jtem whose stress placement diverge
within a rule system which translates the orfrom jts “marked” stress is considered irregular;
thography of English disyllabic words to pho-an jtem whose stress placement is consistel
nology, then these procedures must be accomith its “marked” stress is considered regular.
plished by more complex rules than are used i@n manipulating regularity in this way, they
Italian. found support for their hypotheses about ortho
graphic patterns which mark stress placemen

%It has been argued that initial stress is regular for nOungubjectS read aloud items whose stress patter]

while final st_ress is rggular for verbs (e.g., Kelly & Bock,Were consistent with their markings more accu-
1988). In this experiment, many of the second syllable

stressed irregular items were verbs, which could be viewd@tely and more quickly than tho_se |tem§ Whosf
as somewhat problematic; if second syllable stress is actgiress patterns were not consistent with thei
ally regular for these items, then any effect of regularity (asnarkings (though this effect in the latency date

we have defined it in this experiment) may have beegygg significant only in the by-participants anal-
masked. To investigate whether this might be the case, VVSiS)
bte” = 7"

compared reaction times of those irregular (second sylla L
stressed) words which occur only as nouns relative to those Here, we take a similar approach to the prob

irregular words which occur only as verbs. If second syllalem of stress assignment to that taken by Kelly
ble stress is actually regular for verbs (and indeed is thet al. (1998), seeking to find regularities in the
cause of the nqll effect in this experlrpent), thep we WOUIq‘napping between orthography and the place
expect to see significantly faster naming latencies for verbs . .
than for nouns in this comparison. There is no such effec(ne_m Qf stress. Howe_ver’ our glms differ from
however: reaction times for “irregular” nouns(= 552) theirs in two ways. First, we aim not only to

and verbs i = 547) did notdiffer, t(24) = .34. develop hypotheses about the relationship be
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tween orthography and the placement of stres€SS, for example, and the prefix AB- will be
but also to integrate these hypotheses into identified before the prefix A-. Of course, since
model of nonlexical translation of orthographythis procedure functions without reference to &
to phonology for disyllabic words and non-lexicon of root morphemes, some affixes will be
words. Second, we aim to instantiate our hyidentified in items that are actually monomor-
potheses about these procedures in the form pliemic (e.g., the “affix” -er will be identified in
a computational algorithm. Elsewhere, we havihe word “corner”) and in nonword items (e.g.,
argued that the latter of these points is particihe “affix” -ness will be identified in the non-
larly desirable (see e.g., Coltheart, 1996; Rastlgord “signess”).
& Coltheart, 1999a; Coltheart, Rastle, Perry, The algorithm first searches the string for the
Langdon, & Ziegler, in press), as implementingresence of a prefix. A successful match in the
a theory in the form of a computer progranprefix lexicon is not sufficient for the string to
ensures that the theory is complete (or else thee considered prefixed, however. Each prefi
program will not run), and enables concretearries with it special conditions (e.g., ar- must
tests of theory sufficiency (whether the prograrbe followed by r) that must be met. In addition,
behaves in the same way that people behaveach prefix must be followed by an orthograph-
Thus, we endeavored to develop an approachimally existing bigram in the first two positions
reading disyllabic words and nonwords whiclof a word (based on monosyllabic bigrams).
was sufficiently specific to form the basis of theThus, items like RENGING, though they con-
nonlexical component of a computational dualtain the common prefix RE-, are not considerec
route model. prefixed by the algorithm since the bigram NG
The approach that we adopted in designindoes not occur in the first two positions of any
suitable rules for this nonlexical route is duemonosyllabic English word.
largely to the work of Garde (1968) and the If these conditions are met, then the prefix
more recent work of Fudge (1984). Both ofpronunciation is obtained from the affix store
these authors took the view that certain orthcand the remaining portion of the item is trans-
graphic patterns can be identified as moiated via the GPC rules used by the nonlexica
phemes, and these morphemes have the propeodte of the DRC model. Generally, then, the
sity to influence the placement of stress. W&l pronunciation is assembled and the prefix is
will identify orthographic patterns which servegiven nonstress. In many cases, the prefix prc
as these stress-placing morphemes and integratenciation contains schwa.
this identification procedure with print-to-sound Sometimes, however, this procedure result
translation and vowel reduction in an algorithmin an unpronounceable string, and these in
designed to carry out these tasks automaticallgtances are dealt with by a final check before
Our algorithm is shown in Fig. 2. pronunciation. Consider the item APPLE. The
Following Fudge (1984), our approach taalgorithm matches the prefix AP- in the prefix
stress assignment and vowel reduction relidsxicon; it satisfies the conditions that occur
heavily upon the identification of affixes, a prin-with that prefix (must be followed by P) and
ciple not inconsistent with a growing body ofpasses the orthographic legality test (PL is lege
literature which suggests that affixes are treated the first two positions of a string). The non-
somewhat differently from other, nonmorpheiexical rules of the DRC model translate the
mic, parts of the syllable (e.g., Laudanna, Buremainder of the string as /pl/, making the E
rani, & Cermele, 1994; Marslen-Wilson, Tyler,silent since it occurs at the end of the word. The
Waksler, & Older, 1994; Taft & Forster, 1975).resulting pronunciation is the illegal string
The algorithm contains a store of 54 prefixespl’/. Thus, before pronouncing any item with
and a store of 101 suffixes, identified as such by prefix, the algorithm checks the phoneme
Fudge (1984). The affixes in each store arstring for a phonotactically illegal bigram in the
ordered and searched by length, so that tHast two positions of the string (based on pho-
suffix -NESS will be identified before the suffix nological bigrams which do not occur in the
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Is there a prefix?

-individual context
-orthographic legality test

Pronounce remaining
portion with nonlexical

Is there a suffix?

-individual context

rules -recursion
« v
. R4
- “
. “’
.
\d
: A
H Pronounce remaining
v portion with nonlexical
- - Pronounce entire strin,
Is there a phonotactically- . rutLes. .Use VOWZI by rule ¥
illegal cluster in the last engthentng procedure. '
two positions? T
.
. \ 4 K4
o Look up suffix 0
- &

pronunciation in affix

» . .
- lexicon. If suffix is stress- o
, . L 0
o taking, give final stress. If R
:' not, give initial stress. o
R4
» *
>
&
&

Pronounce entire
string by rule.
Put & between

illegal cluster. Give
initial stress.

Look up prefix
pronunciation in
affix lexicon. Give
final stress.

Is there a phonotactically-
illegal cluster in the last

two positions?

““‘
““‘
““‘
A
Put 5 between
Legend ) W Is there a phonotactically-

}11‘3«‘.;3! f:luster, illegal cluster in the
P Yes Give initial stress. string?
= No

“"“‘
“““
s *

Give initial
stress. Vowels
not reduced.

Give initial
stress. Reduce
D, &,and ato

E]

FIG. 2. The set of nonlexical stress rules.

final two positions of monosyllabic strings insearches the end of the string for the presence |
English). If one occurs (as inmpl’), then the a suffix. Like each prefix, each suffix carries
nonlexical rules of the DRC model are used tavith it special conditions which must be met in
retranslate the entire string, ignoring the prefixprder for it to be considered a suffix. There may
and a schwa is inserted between the illegdde more than one suffix in an item (e.g.,
phonemes. In this case, the resulting pronuncWEATHERED), and so a recursive identifica-
ation is correct: /‘segl/. tion procedure is built into the algorithm such

If a prefix is not identified, the algorithm that it searches the string until no more suffixe:
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can be identified. When all suffixes have been TABLE 2
identified, their pronunciations are obtained corect Stress as a Function of Algorithm-Predicted
from the affix store and the remainder of the Stress for All Disyllabic Words
string is translated with the nonlexical rules
used by the DRC model. Algorithm prediction
However, because the suffix has beee ,
. orrect stress First Second
stripped and translated by other means, the
“root” of the item does not ha\_/e access to a part gt 17,903 1451
of the word which may alter its pronunciation. Second 945 2967

Consider the item PRAVY. Here, the suffix Y is
identified and the nonlexical rules used by the

DRC model translate the remainder of the stringr /a) that vowel is reduced to schwa. The

as /preev/. The vowel here should ted//how- . .
ever, not /ae/, because the presence of the a}gorlthm does not consider the placement o
§econdary stress.

lengthens the vowel. Thus, if the suffix closes
to the “root” is Y or begins with E, and |t_|s EVALUATING THE NONLEXICAL
preceded by a single consonant letter, then if the STRESS RULES
first vowel is translated to /eefpl] or '/, it is
lengthened todl/, /ou/, or Mu/, respectively. In  There are many ways in which the particular
this case, the item is thus pronouncgatélvi/. set of hypotheses we have advanced regardir
The suffix is then generally given nonstresghe rules of nonlexical stress assignment couls
unless it has been identified as a stress-takifg evaluated. One way in which we might eval-
suffix (e.g., -EEN, -IQUE, -O0), in which caseuate this set of hypotheses is to consider to whe
it is given stres$.Many of the suffixes which do extent they capture regularities in stress assigr
not take stress contain schwa. ment for the entire set of disyllabic words. That
If neither a prefix nor a suffix are identified,is, given the general principles we have adopte
then the monosyllabic nonlexical rules conregarding the role of affix-like strings in the
tained in the DRC model are applied to thessignment of stress, what percentage of disy
string and the item is given initial stress. Twdabic words are stressed correctly by the algo
checks then occur to determine whether thethm? Each of the 23,266 disyllabic words con-
second phonological vowel is reduced to schwaained in the CELEX database (e.g., Baayen ¢
First, as was the case for prefixed items, thal., 1993) was submitted to the algorithm, anc
final two phonemes are examined for illegalitythe resulting stress placement was identified
If these phonemes form a phonotactically illegal'able 2 shows the number of words given first
cluster, a schwa is inserted between them. If nand second syllable stress by the algorithm as
such illegal cluster is present in the final twdunction of correct stress. As can be calculate
phonemes, the entire string is checked for phdrom the table, the algorithm assigns stress col
notactic illegality (based on phonological big-rectly to 89.7% of all disyllabic words.
rams which do not occur in any position in Evaluation of the algorithm also led us to
English monosyllables). If a phonotactically il-discover facts about the relationship betweel
legal cluster is identified, each vowel is giverorthography and grammatical class that we ha
full value. If no such illegal cluster is identified, not suspected previously. It has been suggeste
and if the second phonological vowel &/, /v/, (e.g., Kelly & Bock, 1988) that first syllable
stress is regular for nouns and second syllabl
* Following Fudge (1984), a number of word endingsstress is regular for verbs. Whether these claim

which are not strictly suffixes (e.g., -00, -ique) have beegJlre correct, any effects of grammatical clas:
included in the store of “stress-taking suffixes.” Fudge ’

(1984) notes that these word endings share the properties%?ouId certainly b_e dealt with Ir_] a Ie)_(lcal SYys-
stress-taking suffixes and account for the final stress assidigM, NOt @ nonlexical system, since single non
ment of many morphologically simple words. words do not carry information about grammat-
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TABLE 3 particular rule set holds no psychological reali-
Correct Stress as a Function of Algorithm-Predicted ty—Fhat th_es_e rules are nO'F like th_e ones peopl
Stress for Nouns and Verbs Separately use in assigning stress to single disyllabic word:

_ - and nonwords. We thus carried out two addi-
Algorithm prediction tional experiments which aim to establish the
extent to which this rule set provides a gooc

Correct stress First Second L . . .
description of the ways in which people assigr
Nouns stress to disyllabic words and nonwords.
First 5217 460
Second 198 189 EXPERIMENT 2
Veg’st - 1 One way to evaluate the set of hypothese
o advanced here is to investigate whether the wa
econd 129 772

in which people assign stress to nonwords i
related to the way in which our algorithm as-
ical class. However, we used the algorithm tgigns stress to nonwords. Thus, in Experiment .
investigate whether information about gramwe developed a set of nonwords which were
matical class is in any way related to facts abowgubmitted to the algorithm and then named by
orthography by submitting nouns and verbs sefruman subjects. Our intent was to compare th
arately to the algorithm and examining resultingxtent to which the placement of stress as de
stress assignment. We submitted the 6064 dermined by the algorithm for each item
syllabic words which are classed by the CELEXnatched the placement of stress given by sut
database solely as nouns and the 1185 disyllahects.
words which are classed solely as verbs to the
algorithm and then examined the resulting/€thod
stress pattern assignments. As shown in Table 3,Subjects.Fifteen first-year psychology stu-
when nouns were submitted to the algorithmdents from Macquarie University participated.
they were more likely to be stressed on the firshll had normal or corrected-to-normal vision
syllable than on the second syllable; when vertend were native Australian-English speakers
were submitted to the algorithm, they wereSubjects received course credit for their partic:
more likely to be stressed on the second syllabipation.
than on the first syllable. Specifically, while a Materials and apparatusTwo-hundred-ten
lexically based stress assignment rule such asnwords were constructed. All nonwords were
“assign first syllable stress to nouns and secomhonotactically legal and were judged by botk
syllable stress to verbs” correctly stresseauthors and the algorithm to be disyllabic. Sev.
90.74% of the 7249 nouns and verbs in Table &nty-six of the nonwords received second syl
the nonlexical stress assignment procedure thable stress by the algorithm. They receivec
we have described correctly stresses 85.6% sfich stress because of the presence of a prefix
these words. Given these figures, one wondebgcause of the presence of a stress-taking suffi
how much of the apparent association betweerhe other 134 nonwords received first syllable
grammatical class and stress assignment catress by the algorithm.
actually be accounted for by an association be- Stimulus presentation was controlled by the
tween orthographic properties and stress assigpMASTR software (Forster & Forster, 1990)
ment (or, of course, an association betweemnning on a 486 PC. Responses were recorde
phonological properties and stress assignmemiy cassette tape.
an issue which will be considered under General Procedure. Subjects were seated approxi-
Discussion). mately 16 in. from the display monitor. They
Although this set of hypotheses is quite sucwere told that they would see a series of lette
cessful in capturing regularities in the assignstrings that did not form words, although they
ment of stress, it may be the case that thi®oked as if they could be words. They were
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told to pronounce each item as if it were a wordequivalent initial and final stress assignments)
as accurately as possible, and were given Tbr those 130 items stressed on the initial syl
practice items. lable by the algorithm, the modal subject stres:
The target stimuli were then presented one aissignment was on the initial syllable for 105 of
a time, in a different random order for eachthese items and on the final syllable for 25 of
subject. Because subjects were under no tintkese items. For those 76 items stressed on tl
pressure to respond, they controlled the pace fifal syllable by the algorithm, the modal sub-
the experiment, pressing a button when readgct stress assignment was on the final syllabl
for the next stimulus. for 68 of these items and on the initial syllable
for 8 of these items. Thus, the algorithm stres:
agreed with the modal subject stress for 84% o
Nonword pronunciation was recorded, and eadhe items. They? analysis which tested whether
response was coded as having stress on the fisdjorithm stress and modal subject stress wel
phonological vowel or on the second phonologicahdependent was highly significang®(1) =
vowel. Neither secondary stress nor vowel redu®5.56,p < .001, indicating a strong relationship
tion were recorded. Because stress placement dagtween algorithm stress and subject stress.
affect vowel quality, the accuracy criterion used . .
was quite liberal. The only instances in which &!SCussion
nonword stimulus was coded as an error were if The analyses suggest that our algorithm car
the subject did not complete the utterance or if thieires at least some of the facts relevant to th
pronunciation was not a reasonable approximatiamays in which people assign stress to nonwords
of that given by the monosyllabic rules of theUnlike our original ideas about stress regular-
DRC model. Because of the liberal scoring critefty—in which words stressed on the first sylla-
rion, there were very few errors. Subject resultble are considered regular—there seem to be
were tallied, and each nonword was coded for theass of item that reliably takes second syllable
percentage of subjects that assigned initial stresgess. We suggest that this pattern of stres
and the percentage of subjects that assigned firgalsignment may be related to the presence
stress. Item data are contained in Appendix B. morpheme-like orthographic segments—pre
Two types of analysis were carried out tdixes and stress-taking suffixes—which serve tc
investigate whether subjects’ assignment gflace stress.
stress was related to the stress assigned by thelhe construction of the nonlexical route of
algorithm. First,x* analyses, in which subjectthe current DRC model entailed the develop:
stress assignment was examined as a functionmoent of a set of hypotheses about the GPC rule
algorithm prediction, were conducted for eaclpeople use in reading monosyllabic nonword:
subject individually. Each of these analyses wasloud. These hypotheses were intended to re
highly significant (allps < .0001), indicating a flect how the majority of people pronounce any
strong relationship between subject stress agiven monosyllabic nonword. Our goal was the
signment and algorithm stress assignment, f@ame here—to design a set of hypotheses whic
each subject individually:xi(1) = 54.80, pronounce disyllabic nonwords in the way that
X>(1) = 95.39,x5(1) = 35.75,x5(1) = 53.11, the majority of people pronounce these non
X2(1) = 85.91,x5(1) = 67.91,x%(1) = 70.27, words, complete with correct stress assignmer
Xa(1) = 65.51,x5(1) = 61.05,x3,(1) = 40.79, and vowel reduction information. In examining
Xa(1) = 62.94,x%,(1) = 41.66,x55(1) = 43.40, the performance of the algorithm relative to
Xa(1) = 47.58,x3(1) = 73.18. human readers, however, it is clear that meetin
Second, we determined the modal subjethis goal is still somewhat distant. While our
stress pattern assignment for each item and thalgorithm captures many of the facts abou
examined this as a function of the algorithnstress assignment, it clearly does not capture &
prediction (excluding those 4 items which didof the facts that people use when assignin
not have a modal stress assignment becausestrfess to nonword items.

Results
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In order to investigate the areas in which thevhich were given 67 and 100% first syllable
algorithm’s performance was not like that ofstress, respectively). Thus, it seems clear the
human readers, we calculated, for each item, tlieere are individual differences in the amount of
proportion of subjects who used, in their reinformation readers use in the identification of
sponse, the same stress as the algorithm minaf§ixes; data which could elaborate this geners
the proportion of subjects who used the oppositebservation are not available at present, how
stress as the algorithm. Negative values (indever.
cating disagreement between human readersin general, this first attempt at developing ar
and the algorithm) resulted for 33 (15.7%) ofalgorithm which translates orthography to pho-
the items. Eighteen of these items (8.6%) hadology of disyllabic items by rule was reason-
high negative values (over.200): these are the ably successful in capturing some of the fact:
items for which the algorithm fails. relevant to the ways in which readers assigt

Unfortunately, an examination of these itemstress to disyllabic items by rule. However, it is
yielded few clues to the ways in which theclear that we have not captured all of the rele:
algorithm is insufficient, though some patternsant facts. Further empirical and modeling work
did emerge. All of the items for which the will be required to discover what these facts are
algorithm performs poorly are ones in whichand how they might be reconciled with the
human readers assign second syllable stress aydtem we have proposed.
the algorithm assigns first syllable stress. Three
of the items contain letter strings which form EXPERIMENT 3
suffixes that reliably do not take stress: the Our attempt in Experiment 1 to produce the
itemscavance, datancegndkabistcontain suf- stress regularity by frequency interaction in a
fixes which, in the set of disyllabic words, neveiset of disyllabic words failed: using a single rule
take stress, yet subjects reliably assigned secobdsed on the statistical distribution of stres:s
syllable stress to these items. The itegen- patterns in the language failed to produce al
noze, dorrote, jinnifeandhennokenave in com- effect of stress regularity in human readers
mon a short first syllable vowel and a longThus, we developed a set of hypotheses the
second syllable vowel; perhaps in the absen@®nsiders the types of facts which may be rel
of affixes and illegal clusters, subjects assigavant to stress assignment and that seems
stress to the syllable containing the long voweprovide a reasonably good description of the
However, this rule fails to account for the factways in which people assign stress to nonwords
that subjects in this experiment assigned firdh Experiment 3, we investigated whether we
syllable stress towirtife. The itemsimream, would observe a main effect of stress regularity
emvoke, emageand ilseeb all contain letter and/or a stress regularity by frequency interac
strings which form prefixes, but the conditiongion in word reading, using this set of hypothe-
required for these letter strings to be treated &es as the basis for the regularity classificatior
prefixes by the algorithm are not met in these As it turns out, when the algorithm we have
items, and hence they are given first syllablproposed is applied to those items used in EX
stress. Specifically, in the set of disyllabigperiment 1, the results show that 89% of the
words, IM- is a prefix only if followed by B, M, items are, in fact, classified as regularly
or P; EM is a prefix only if followed by B or P; stressed. Only three of the items in the “low-
and IL- is a prefix only if followed by L. So it frequency irregularly stressed” condition of that
seemed that readers may have overgeneralizexpberiment are classified as irregular by the
the prefix rule. Two similar itemsilgest and algorithm; similarly, only three of the items in
irsabe,were also given unreliable stress by subthe “high-frequency irregularly stressed” condi-
jects (53 and 47% first syllable stress, respetion are classified as irregular. Thus, our failure
tively), though there are other items in whichto observe a main effect of stress regularity ol
subjects seem to observe these constraints an interaction between stress regularity and fre
prefix identification (e.g.jmwise and irsome, quency may have been due to the fact tha
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nearly 90% of the items in that experiment werevere groupwise matched on frequency, initial
regular. phoneme class (e.g., both fricatives), and wor

Therefore, an experiment similar to Experidength.
ment 1 was designed which measured naming Word presentation and data recording were
latencies for words varied on stress regularitgontrolled by the DMASTR software (Forster &
and frequency. If our hypotheses concerning theorster, 1990) running on a 486 PC. Response
rules that human readers use to read disyllabigere timed via a voice key which was attachec
words aloud are correct, then we will find anto each subject’s head so that the mouthpiec
effect of stress regularity. We further expectemained stationary throughout the experimen
that this effect will be greater for low-frequency Procedure. Subjects were seated approxi-
words than for high-frequency words. mately 16 in. from the monitor and fitted with

the voice key headset. They were instructed t
Method read the words as quickly and as accurately a

Subjects.Subjects were 26 Macquarie Uni-possible. Subjects participated in 10 practice
versity psychology students. All subjects hadrials and then named the 120 experimental tri
normal or corrected-to-normal vision and werals. Trials were randomized for each subject
native speakers of Australian-English. Subject§he experimenter recorded errors by hand dur
received an introductory course credit for theimg the session.
participation.

Stimuli and apparatusThe algorithm de-
scribed above was applied to several hundred Reaction times were collected and those fo
words, from which 60 disyllabic words wereerrors or spoiled trials were discarded. The iten
selected as targets. According to the algorithnGUITAR was inadvertently classified as GPC reg:
each of these words was irregularly stressedlar, so this item was removed from the analysis
and none contained a GPC irregularity. Hencdhe item ANODE produced 77% errors (all of
stress regularity was isolated from other typethese were pure stress regularization errors), ar
of regularity in this experiment. If the algorithmso this item was also removed from the analysis
identified a word as irregular only because of afthe remaining reaction times were winsorized tc
irregular application of schwa (and not an irregthe second standard deviation boundary. Item da
ular application of the stress marker), the wordre contained in Appendix C.
was not included in the experiment. Separate ANOVAs were performed on the

Kuctera and Francis (1967) frequencies fosubject and the item latency data. Subject ana
each of these words were obtained, and theses included two within-subjects factors (stres.
targets were split into a group of low-frequencyegularity and frequency); item analyses treate
words (frequencies below 25 per million) and dhese two variables as between-items factor:
group of high-frequency words (frequenciesSubject and item data are shown in Table 4.
above 50 per million). The algorithm indicated The ANOVAs revealed a main effect of word
that very few words are stress irregular anérequency, F,(1,25) = 61.27, p < .01,
GPC regular, and only a small percentage dfISE = 1037.37,F,(1,114) = 41.16,p <
these words are of high frequency; as such th@1,MSE = 952.56, asiaming latencies were
high-frequency targets could not be separatddnger for low-frequency items than for high-
from the low-frequency targets by as many frefrequency items. A main effect of stress regu-
quency points as was desired. While 50 of thiarity also emergedf,(1,25) = 17.41,p <
targets were of low frequency, only 10 were of01, MSE = 290.37, F,(1,114) = 18.38,
high frequency. p < .01,MSE= 952.56, asnaming latencies

Stress-regular controls were created for eachkere longer for stress-irregular items than for
group of targets. All of these controls werestress-regular items. The cost of stress irregt
pronounced by the algorithm to ensure stredarity was greater for low-frequency words than
and GPC regularity. Irregular and regular item$or high-frequency words. This interaction be-

Results
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TABLE 4 we carried out additional analyses which ex-
Naming Latency and Percentage of Error as Functions fuded these items. The pattern of latency dat
Wword Frequency and Stress Regularity by Subjects (Itewas the same as that in the original analysis: a
Data in Parentheses) effect of frequency emergedF,(1,25) =
) 66.12, p < .001, MSE = 920.53,
Low frequency High frequency F2(1,103) — 38.41, p < .001, MSE =
906.43; areffect of stress regularity emerged,

Naming latency

Iregular stress 543 (545) 480 (481) F1(1,25)= 12.84,p < .01,MSE = 312.49,
Regular stress 515 (516) 479 (479) F,(1,103) = 15.27, p < .001, MSE =
Percentage of error 906.43; and thénteraction between these fac-

Irregular stress 15.50 (15.38) 1.70 (1.71)

tors was significant by subjects;;(1,25) =
20.91,p < .001,MSE = 176.75, but not by
items, F,(1,103) = 2.70,p = .10, MSE =
906.43. Similarly, this error analysis showed
tween stress regularity and frequency was sign effect of frequencyr;(1,25)= 84.13,p <
nificant by subjectsfF,(1,25) = 22.12,p < .001,MSE= .0016,F,(1,103)= 4.48,p <
.01, MSE = 208.78, andthere was a trend .05, MSE = .0150, aneffect of stress regu-
toward significance in the item datalarity, F1(1,25) = 64.79,p < .001,MSE =
F,(1,114) = 3.17, p = .078, MSE = .0028, F,(1,103) = 26.44, p < .001,
952.56. MSE = .0150, and aninteraction between
Error data were analyzed in the same way akese factorsfF,(1,25) = 73.67,p < .001,
were the latency data. Ninety percent of th&1SE = .0012,F,(1,103)= 3.79,p = .05,
errors were pure stress regularizations; the IMMSE = .0150.
cation of the stress marker was determined non-, )
lexically. The other errors were a ‘tlaage of DIScussion
various mispronunciations. Most importantly, In Experiment 1, we failed to find a main
the ANOVAs revealed a stress regularity effecteffect of stress regularity for low-frequency
F.(1,25) = 74.42,p < .01, MSE = .0024, words or for high-frequency words when stress
F,(1,114) = 27.87, p < .01, MSE = regularity was determined by a single fact abou
159.65, asthere were more errors for stresghe statistical distribution of stress patterns ir
irregular items than for stress regular itemddisyllabic English words. When stress regular-
Similarly, a frequency effect emerged,ty is classified on the basis of the set of hy-
F.(1,25)= 102.22,p < .01,MSE = .0016, potheses implemented in the algorithm we hav
F,(1,114)= 5.02,p < .05,MSE = 159.65, described, a stress regularity effect doe:
as there were more errors for low-frequencgmerge, suggesting that the set of hypothese
items than for high-frequency items. The regupresented here provides a good description ¢
larity effect was greater for low-frequency itemghe knowledge to which human readers may

Regular stress 1.10(1.08) 0.00 (0.00)

than for high-frequency itemsk,(1,25) = appeal when reading disyllabic items aloud.
83.73,p < .01,MSE = .0012,F,(1,114)= The effect of stress regularity was greater fol
3.95,p < .05, MSE = 159.65. low-frequency words than for high-frequency

Eleven of the items in Experiment 3 had twowords, as is the case with GPC regularity. This
possible stress patterns, though they were clastfect was significant both by subjects and by
sified as regular or irregular based on the stregems in the error analysis, although it only
pattern of the highest frequency alternative. lteached significance by subjects in the latenc
could be argued that the conflicting lexical in-analysis. Because trends in the appropriate d
formation about these items could result imection are evident in the mean naming latenc
slowed naming latencies; this possibility is esvalues, it is likely that the small number of
pecially worrisome since 9 of the 11 items werdigh-frequency stress irregular items contrib-
in the low-frequency irregular condition. Thus,uted to the marginal significance in the item
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data. In addition, because of the high error rate store of morphological units in the nonlexical
for low-frequency irregularly stressed itemsprocedure, we have blurred somewhat the dis
many of the items which may have producedinction between lexical and nonlexical infor-
slow naming latencies were removed from thenation. Further thought is required to decide
analysis. whether a store of letters which combine to

Thus, it appears as if disyllabic reading cafiorm affixes and a store of letters which com-
be expressed within a dual-route theory and thaine to form words are sufficiently distinct to
the procedures described in Fig. 2 may capturefer to the former as “nonlexical” and the latter
some of the facts relevant to the ways in whiclas “lexical.”
people assign stress to words and nonwords. , )

Complexity of the Nonlexical Rules
GENERAL DISCUSSION Another issue that should be considered i

We have demonstrated that the procedureghether the nonlexical system that we have
required for reading disyllabic items can belescribed is unnecessarily complex; could we
expressed in a system of rules and, moreovesacrifice either the identification of prefixes or
that this set of hypotheses provides a good dsuffixes without cost to the system? We have
scription of the rules to which human readergxplored this issue briefly by designing a secon
appeal, if, of course, they appeal to rules at alalgorithm which eliminates the suffix identifi-
Thus, it seems worthwhile to consider whethecation procedure and comparing its perfor-
the principles on which this system of rules isnance to that of the full algorithm. Recall that
based are consistent with a dual-route compwef the 23,226 disyllabic words in the CELEX
tational model of reading, the DRC modeldatabase, only 2396 were stressed incorrect
(Coltheart et al.,, 1993; Coltheart & Rastlepy the full algorithm. When the suffix identifi-
1994; Rastle & Coltheart, 1998, 1999a,b), and ifation procedure is removed entirely, the algo
so, how that model might be expanded to aaithm stresses 2489 words incorrectly: facts
commodate the reading of disyllabic words. about the ends of words increase the perfor
mance of the model by only 93 words, a resul
possibly inconsistent with Kelly et al.’s (1998)

One issue that must be considered immedclaim that stress is “marked” at the ends of
ately is whether the nonlexical rule system wevords. However, while the identification of suf-
have described in Fig. 2 runs contrary to théixes does not seem to contribute substantiall
principles of the DRC model in its current non-to stress assignment, this procedure is importat
lexical system. That is, would we have to relinfor the correct assignment of phonology from
quish our commitment to completely nonlexicabrthography. Many of the suffixes identified by
processing on one side of the model in order tthe full algorithm have pronunciations that con-
include a system which relies on a store ofain lax vowels, despite having orthographies
affixes? We think that the consequences of inwhich normally correspond to tense vowels
plementing such a system may not be this ur{e.g., IVE). Were these strings not identified as
fortunate and, in fact, believe that this systemsuffixes and given pronunications accordingly,
may fall within the principles of the currentthey would be translated incorrectly. Thgtent
DRC model. Currently, the nonlexical route ofto which the identification of suffixes plays a
the DRC model relies on rules which translateole in correct spelling—sound translation of
graphemes to phonemes. Thus, the nonlexicpblysyllables is an issue that requires furthe
route already contains a store of graphemes—havestigation, however.
store of instances in which letters combine to
form graphemes. The nonlexical system de2rthography or Phonology
scribed here contains this store and also a storeOur algorithm seems to capture some regu
of instances in which letters combine to formarities in the assignment of stress in disyllabic
affixes. Of course, we concede that by includingvords using orthographic cues which often cor-

Is This System Nonlexical?
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respond to prefixes and suffixes. Howeveithe model is updated on every processing cycle
given the quasi-regularity of the orthography-and because such updating requires sever
phonology mapping in English, might it be thecomputations for each connection in the model
case that the cues critical to stress assignmeahis expanded DRC would run much more
are phonological rather than orthographic? Peslowly, but that is merely a practical obstacle.
haps what readers do is to apply some form of A more challenging aspect of adding stress t
grapheme—phoneme correspondence systemthe operation of the lexical route would be to
disyllabic letter strings and then assign stress atecide how and where lexical stress would b
the basis of vowel quality. A regularity effectrepresented in the model: should there be sej
might then emerge for those items like ALLOY ,arate levels for segmental (i.e., the componer
which would be given second syllable stress bghonemes) and suprasegmental (i.e., the sy
the algorithm due to the presence of a nonlexlabic structure and position of stress) informa-
cally translated lax vowel in the initial syllable.tion in the lexical system? The most obvious
In order to proceed with a serious model ofvay to include suprasegmental information in
disyllabic word reading, we would have to de+the lexical route of the DRC model is to include
termine empirically whether readers derive cueiswithin each lexical entry, so that, for example,
for stress assignment from orthographic or fronthe orthographic lexical entry for TRUSTEE
phonological information. would be connected to the phonological entry
for /tr'sti’/. Representing suprasegmental infor-
mation in this way would, however, run counter
We have argued that the underlying princito many current speech production models
ples of the algorithm described here are nathich represent segmental and suprasegment
fundamentally inconsistent with the principlesnformation separately (e.g., Butterworth, 1992;
on which the DRC model is based. Given thisl_evelt, 1992; Levelt, & Wheeldon, 1994) and
how might the DRC model be extended to conmay not capture many of the speech error an
sider disyllabic word and nonword reading®atient data which those models were intende
The DRC model currently deals only withto capture. Clearly, an explicit commitment to a
monosyllables, and hence its orthographic lexparticular hypothesis about the representation c
icon contains entries for all of the monosyllabicsuprasegmental phonological information will
words in the CELEX database (Baayen et alhe required before the DRC model could be
1993)—7980 words in all—and the model'sexpanded to include disyllabic items. Compel-
phonological lexicon contains entries for thding such commitments is, of course, one of the
pronunciations of all of these words. Extendingirtues of computational modeling.
the model so that it could deal with both mono- The second modification to the model would
syllables and disyllables would involve twobe to replace its existing nonlexical route with a
things. First, the lexicons would need to contaisystem like the one illustrated in Fig. 2, a sys-
entries for all of the monosyllabic and disyllabictem which includes the existing nonlexical
words from the CELEX database: that wouldyrapheme-to-phoneme translation system bt
increase the size of the orthographic lexicohas procedures for dealing with stress assigr
from 7980 words to 31,246 words. Since all oiment overlain upon it. Suprasegmental phono
the entries in the orthographic lexicon have téogical information generated by this nonlexical
be appropriately connected to the letter levedystem would need to be coordinated with su
and also to the phonological lexicon, and sincprasegmental phonology retrieved from the lex
all of the entries in the phonological lexiconicon such that pronunciation latency is length-
have to be appropriately connected to the ph@ned when there is conflict between these tw
neme level and to the orthographic lexicon, thisources of information.
expansion would involve a large increase in the Although we have suggested that stress a:
number of letter, phoneme, and word units ansignment and vowel reduction can be explaine
connections in the model. Because every unit iwithin a dual-route theory, implementing this

Toward a Model of Disyllabic Reading
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system of nonlexical rules into the DRC modetontrary, the learning algorithm approach ha:
will surely pose some major difficulties, someproven to be an extremely popular and fruitful
of which may be insoluble. We discuss one obne in modeling reading aloud in the mono-
these difficulties here. The set of hypotheses wgyllabic domain, in both dual-route frame-
have advanced regarding stress placement apdrks (e.g., Zorzi et al., 1998) and single-
vowel reduction by rule depends on informatiotoute frameworks (e.g., Plaut et al., 1996;
from all parts of the letter string, from beQin-Seidenberg & McClelland, 1989), and may
ning to end. However, the nonlexical route Obrove useful in dealing with the added com-
the DRC model operates serially, from left toyjexities posed by polysyllabic words. One
right, and we have argued previously (Coltheagytentially desirable feature of this approact
& Rastle, 1994; Rastle & Coltheart, 19992) thafy gefining relationships in quasi-regular do-

only early irregularities contribute to a latencyyains is its ability to capture graded effects of

cost in naming. Thus is it the case, then, thactonsistency in the mapping of interest. Thus

only the instances in which irregular stress bep oo types of models could be seen as pa
comes ev_ident early in ”‘?”'eXiC?" procgssingcularly suitable for the problem of stress
will resu_lt na Iatency_ costin naming the Item?assignment if it were demonstrated that gra
Does this imply that irregularities in stress Sy ations in the consistency of the mapping
signment derived from stress-taking suffixes art?etween orthography and stress assignme
inconsequential to naming latency, given tha

this information is computed late in processin gffected naming latency or accuracy. How-

by the nonlexical system? Further experiment%ver' none of these models has considered tr

and modeling work is required to understan(ﬁ)rObIem of English polysyllabic word read-

how the hypotheses we have advanced here A9 No doubt, as has been the case in ou

be reconciled with a serially operating nonlexi€ffrts with the DRC model, the special issues
cal system. which arise when polysyllables are consid-

ered will pose these models some difficulty.
Reading Polysyllables and Other Approaches

to Reading APPENDIX A

In the work presented here, we have con-
sidered whether, and if so how, the problem Item Data: Experiment 1
of polysyllabic words can be dealt with in a
dual-route framework. In this pursuit, we Word RT YoErTOr
have offered experimental work which shows
that both segmental and suprasegmental ph'bqw}‘;:eegﬂf;rcfargets
nological information can be generated by gpide 527 0.00
rule and, moreover, that classifications basedabyss 560 16.67
on these rules predict human performance inalign 523 0.00
reading aloud English words and nonwords to 2‘;‘?1;;” 2;2 8'88
some degree, though clearly further experi- benign 575 0.00
mental and modeling work is required before prigade 604 0.00
the present research can be reconciled withcigar 552 0.00
our previous modeling work in the monosyl- gies‘:;;?s sg: g-gg
labic .domam' disgust 579 0.00

While we have demonstrated that stress as-jisye| 556 5.56
signment can be predicted to some degree by ajisturb 550 0.00
system of rules, the work we have presented forbid 575 5.56
here is not relevant to adjudicating between imbibe 661 22.22

various approaches to modeling reading. On the™* >40 >-56
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Word RT %Error Word RT %Error
lampoon 540 0.00 attack 519 0.00
malign 569 0.00 became 531 0.00
maroon 525 16.67 before 497 0.00
ornate 537 5.56 between 529 0.00
pertain 541 0.00 degree 533 0.00
platoon 544 5.56 despite 591 0.00
restore 532 5.56 except 582 5.56
revolt 554 0.00 expect 529 5.56
shampoo 520 0.00 extent 590 0.00
suffice 536 16.67 herself 527 0.00
trustee 539 0.00 himself 521 0.00
adorn 559 0.00 indeed 492 0.00
enact 534 0.00 itself 573 0.00
suspend 546 0.00 perhaps 517 0.00
Low-frequency provide 532 0.00
regular targets report 512 0.00
acrid 623 27.22 respect 520 0.00
adverb 659 11.11 return 517 0.00
album 539 0.00 support 504 0.00
audit 558 5.56 unless 566 0.00
bandit 534 0.00 until 526 0.00
blemish 542 5.56 hotel 545 0.00
blister 558 0.00 around 491 0.00
candid 572 0.00 High-frequency
canon 614 16.67 regular targets
cathode 582 22.22  center 512 0.00
chowder 550 11.11  central 544 0.00
coffin 525 0.00 common 537 0.00
dwindle 575 0.00 council 552 0.00
eagle 521 0.00  county 625 11.11
falcon 551 0.00 doctor 529 0.00
fauna 576 0.00 effort 495 0.00
gypsy 587 0.00 fiscal 568 0.00
laundry 537 0.00 freedom 550 0.00
mammoth 545 0.00  further 537 0.00
mystic 559 0.00 hundred 529 0.00
nostril 539 0.00 likely 522 0.00
orphan 539 0.00 little 530 0.00
privy 579 11.11 meeting 500 0.00
proxy 528 0.00 member 526 0.00
quibble 546 0.00 method 510 0.00
savvy 561 11.11 morning 507 0.00
shudder 516 0.00 order 536 0.00
sibling 532 0.00 pattern 523 0.00
sigma 534 0.00 problem 503 0.00
tepid 528 0.00 public 532 0.00
High-frequency second 506 0.00
irregular targets simply 509 0.00
about 493 0.00 spirit 527 0.00
account 572 0.00 study 488 0.00
across 545 0.00 system 536 0.00
alone 493 0.00 volume 554 0.00
along 513 0.00 western 552 0.00
amount 501 0.00 written 537 0.00
appear 554 0.00  normal 500 0.00
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RASTLE AND COLTHEART

Algorithm Prediction and Human Stress

Assignment for Nonwords in Experiment 2

Subjects Subjects
Algorithm initial final

Nonword prediction (proportion) (proportion)
zortess 1 0.93 0.00
irsabe 1 0.47 0.40
ilgest 1 0.53 0.40
imwise 1 0.67 0.33
irsome 1 1.00 0.00
wodment 1 0.80 0.13
parness 1 0.73 0.27
loonise 1 0.47 0.53
mootite 1 0.73 0.27
loament 1 0.80 0.13
booness 1 0.73 0.27
horger 1 0.93 0.07
massest 1 0.47 0.53
gatted 1 1.00 0.00
yazzen 1 0.87 0.07
norring 1 1.00 0.00
furrage 1 0.80 0.20
daffish 1 0.93 0.07
bogdom 1 1.00 0.00
sagful 1 0.93 0.07
vighood 1 0.87 0.07
paddise 1 0.47 0.47
hobbite 1 0.93 0.07
vurtless 1 1.00 0.00
sartment 1 1.00 0.00
zirdness 1 1.00 0.00
chigor 1 0.93 0.07
wappous 1 0.73 0.2
birsome 1 0.93 0.07
nagward 1 1.00 0.00
zidy 1 1.00 0.00
famwise 1 0.93 0.07
hochic 1 1.00 0.00
tannid 1 1.00 0.00
vappish 1 1.00 0.00
beevast 1 0.87 0.13
vockine 1 0.60 0.33
sortise 1 0.87 0.13
zaffite 1 0.67 0.33
bafite 1 0.47 0.53
dirment 1 0.87 0.13
geavment 1 0.60 0.40
dastude 1 0.60 0.40
vabbage 1 0.93 0.07
zabage 1 0.8 0.07
pemment 1 0.73 0.27
vassive 1 0.93 0.07
tabive 1 0.53 0.47

Subjects Subjects
Algorithm initial final

Nonword prediction  (proportion)  (proportion)
vebous 1 0.40 0.53
difboze 1 1.00 0.00
firtment 1 0.93 0.00
quimhet 1 0.73 0.27
tozkolt 1 0.87 0.00
beavnat 1 0.87 0.00
holpbon 1 0.93 0.00
rotgeap 1 0.80 0.07
seegmant 1 0.93 0.07
bitjeed 1 0.93 0.07
nurhact 1 0.60 0.33
zabnart 1 1.00 0.00
vabtaze 1 0.80 0.20
kortbeem 1 0.93 0.07
harbnaze 1 1.00 0.00
safnode 1 1.00 0.00
jovtirt 1 0.80 0.20
bimgant 1 0.87 0.07
gantmirt 1 1.00 0.00
pizlime 1 0.80 0.20
feagtin 1 1.00 0.00
kateway 1 1.00 0.00
peadote 1 1.00 0.00
goonoze 1 0.47 0.40
meerike 1 0.47 0.53
voobane 1 0.80 0.13
heanoke 1 0.73 0.20
doomipe 1 0.87 0.13
beakibe 1 0.87 0.07
veanope 1 0.80 0.13
fibeway 1 1.00 0.00
jaimipe 1 0.87 0.13
bomegoze 1 0.87 0.00
neethime 1 0.73 0.20
leabime 1 0.60 0.33
bittel 1 0.67 0.33
bennel 1 0.80 0.20
mestle 1 1.00 0.00
ekit 1 0.73 0.27
tuckle 1 1.00 0.00
pabble 1 1.00 0.00
dipple 1 1.00 0.00
portak 1 0.93 0.07
tilla 1 1.00 0.00
tosal 1 1.00 0.00
wortal 1 1.00 0.00
purdle 1 1.00 0.00
jortle 1 1.00 0.00
chakle 1 1.00 0.00
melpow 1 0.87 0.07
eadel 1 0.93 0.07
reasel 1 1.00 0.00
heakin 1 0.93 0.00
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Subjects Subjects Subjects Subjects
Algorithm initial final Algorithm initial final

Nonword prediction  (proportion)  (proportion)  Nonword prediction  (proportion)  (proportion)
naipin 1 0.93 0.07 anness 2 0.07 0.93
peefin 1 0.93 0.07 berite 2 0.13 0.80
saizel 1 0.93 0.07 cokite 2 0.27 0.67
deavan 1 0.80 0.20 depite 2 0.13 0.87
laifun 1 1.00 0.00 dishood 2 0.47 0.53
kainip 1 0.73 0.20 enace 2 0.00 1.00
reakin 1 0.87 0.07 expite 2 0.20 0.80
leenad 1 0.93 0.07 inrant 2 0.60 0.40
domipe 1 0.53 0.47 misward 2 0.47 0.53
wirtife 1 0.80 0.20 reways 2 0.47 0.53
mirripe 1 0.40 0.60 unhood 2 0.47 0.53
birtoze 1 0.40 0.53 reless 2 0.07 0.80
emvoke 1 0.20 0.80* akous 2 0.20 0.73
ilseeb 1 0.27 0.53* monade 2 0.27 0.73
imream 1 0.20 0.80* nokaire 2 0.07 0.93
gonnoze 1 0.13 0.80* tovaise 2 0.20 0.80
merike 1 0.27 0.73* yokate 2 0.53 0.47
hennoke 1 0.27 0.73* rokee 2 0.53 0.47
jinnife 1 0.20 0.80* baveen 2 0.07 0.87
dorrote 1 0.13 0.87* fickeer 2 0.00 0.93
okone 1 0.13 0.87* soctelle 2 0.20 0.80
nairoke 1 0.33 0.67* tockenne 2 0.27 0.73
cavance 1 0.07 0.93* hojese 2 0.40 0.60
kabist 1 0.33 0.67* itesque 2 0.07 0.93
datance 1 0.33 0.67* rizesse 2 0.07 0.87
emage 1 0.27 0.73* wodette 2 0.13 0.87
voket 1 0.27 0.73* riteur 2 0.13 0.80
ratine 1 0.27 0.73* vodique 2 0.00 1.00
kifise 1 0.13 0.80* dirhoo 2 0.47 0.47
satose 1 0.07 0.93* bagoon 2 0.07 0.93
alave 2 0.00 1.00 galotte 2 0.00 1.00
aselt 2 0.00 1.00 nukteen 2 0.40 0.60
anofe 2 0.00 1.00 reakade 2 0.47 0.47
anift 2 0.00 1.00 seazaire 2 0.07 0.80
bepone 2 0.33 0.67 leenaise 2 0.20 0.73
covike 2 0.40 0.60 koonate 2 0.33 0.67
deseft 2 0.07 0.93 doaree 2 0.20 0.67
diskove 2 0.13 0.87 woareen 2 0.13 0.87
enift 2 0.00 1.00 doaneer 2 0.00 0.87
extope 2 0.20 0.80 maikelle 2 0.27 0.67
extip 2 0.20 0.80 raifenne 2 0.20 0.80
inirv 2 0.07 0.87 leamese 2 0.27 0.73
misbane 2 0.20 0.80 naikesque 2 0.13 0.87
misbon 2 0.60 0.40 leavette 2 0.20 0.80
retoke 2 0.27 0.73 joovine 2 0.40 0.53
retik 2 0.53 0.47 meenique 2 0.20 0.80
unvike 2 0.20 0.80 veefoo 2 0.60 0.40
commoke 2 0.00 1.00 beetoon 2 0.60 0.40
prenope 2 0.40 0.60 hoateen 2 0.47 0.47
prenip 2 0.47 0.53 noorate 2 0.53 0.40
rezoct 2 0.27 0.73 nockate 2 0.40 0.47
rezoke 2 0.13 0.87 corroze 2 0.07 0.93
avist 2 0.13 0.87 comirt 2 0.07 0.93
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Subjects Subjects Word RT %Error
Algorithm initial final

Nonword prediction  (proportion)  (proportion) oblong 545 11.54
outbid 549 0.00

comize 2 0.13 0.87 outdid 555 0.00
cadesce 2 0.00 0.93 pecan 540 0.00
coadesce 2 0.00 0.93 perjure 569 30.77
quartet 535 0.00

Note. Proportions do not sum to 1 in all cases because "attan 580 38.46
errors have been excluded. Items on which the algorithm fomance 496 0.00
performs particularly poorly are denoted by an asterisk. ~ Statute 539 7.69
subway 483 0.00

transcript 540 3.85

APPENDIX C transit 528 3.85

tribute 530 0.00

Item Data: Experiment 3 voodoo 535 0.00

Low-frequency
Word RT %Error regular targets

abhor 573 3.85

Low-frequency abduct 517 0.00
irregular targets abstain 496 0.00
abbey 513 7.69 acquit 546 0.00
abject 571 42.31 accuse 500 0.00
abscess 600 15.38  lawful 496 0.00
accent 486 15.38  radish 491 0.00
access 512 11.54  eldest 500 0.00
adjunct 533 69.23 allot 562 11.54
advent 546 26.92 abort 499 0.00
alley 506 11.54 annoy 462 0.00
allies 548 7.69 annul 612 19.23
alloy 547 50.00 assort 530 0.00
aloe 654 65.38 assign 481 0.00
annals 601 42.31 attain 482 0.00
annex 527 26.92 atone 509 0.00
asses 517 61.54  nasty 477 0.00
asset 515 34.62 compute 521 0.00
attic 524 0.00 lavish 492 0.00
augment 606 7.69  endows 547 7.69
avid 557 26.92 excites 565 0.00
banal 599 0.00 kazoo 574 0.00
bombard 569 0.00 expel 518 0.00
cadet 550 0.00 impairs 497 0.00
canal 562 7.69 obsess 543 3.85
caress 533 11.54  sublet 519 11.54
cement 511 0.00 aloof 512 0.00
compost 550 7.69  ailment 550 0.00
duress 564 0.00 album 517 0.00
endive 545 30.77 otter 523 0.00
excerpt 583 38.46  greedy 491 0.00
exile 525 3.85 collect 501 0.00
exit 492 0.00 umber 568 0.00
grandeur 566 0.00 commute 501 0.00
guitar — — flemish 519 0.00
igloo 516 0.00 grammar 507 0.00
impulse 509 19.23 loyal 501 0.00
lament 515 7.69 figment 536 0.00
latrine 607 11.54 organ 503 0.00
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Ans, B., Carbonnel, S., & Valdois, S. (1998). A connec-
tionist multiple trace memory model for polysyllabic

Word RT %Error
taboo 515 0.00
tattoo 504 0.00
turban 511 0.00
proclaim 525 0.00
shipment 507 0.00
endless 503 0.00
pumping 495 0.00
manhood 515 0.00
abide 498 0.00
kingdom 499 0.00
punish 478 0.00
High-frequency
irregular targets
anode — —
college 505 0.00
commerce 521 15.38
common 478 0.00
effort 489 0.00
hotel 446 0.00
itself 468 0.00
marine 495 0.00
outside 479 0.00
person 444 0.00
High-frequency
regular targets
acting 502 0.00
matter 473 0.00
closer 477 0.00
market 489 0.00
alone 457 0.00
higher 458 0.00
along 478 0.00
payment 499 0.00
amount 463 0.00
complete 497 0.00
REFERENCES

word reading.Psychological Reviewi05,678-723.
Baayen, R. H., Piepenbrock, R., & van Rijn, H. (199B)e

CELEX lexical database (CD-ROMlLinguistic Data

Consortium, University of Pennsylvania, PhiladelphiaFudge, E. C. (1984fnglish word stress.ondon: Allen &

PA.

individual differences.Journal of Experimental Psy-
chology: Human Perception and Performance),
537-554.

Chomsky, N., & Halle, M. (1968)The sound pattern of
English.New York: Harper & Row.

Colombo, L. (1991). The role of lexical stress in word
recognition and pronunciationPsychological Re-
search,53, 71-79.

Colombo, L. (1992). Lexical stress effect and its interaction
with frequency in word pronunciatiodournal of Ex-
perimental Psychology: Human Perception and Per-
formance,18, 987-1003.

Colombo, L., & Tabossi, P. (1992). Strategies and stres!
assignment: Evidence from a shallow orthography. In
R. Frost & L. Katz (Eds.)Orthography, phonology,
morphology, and meanin@p. 319-340). Amsterdam:
Elsevier.

Coltheart, M. (1978). Lexical access in simple reading
tasks. In G. Underwood (Ed.jtrategies of informa-
tion processing(pp. 151-216). London: Academic
Press.

Coltheart, M. (1981). The MRC psycholinguistic database.
Quarterely Journal of Experimental Psycholo@®BA,
497-505.

Coltheart, M. (1996). Computational modeling and cogni-
tive psychology.Noetica, Issue 1. http://psych.psy.u-
g.0z.au/CogPsych/Noetica/OpenForum.

Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993).
Models of reading aloud: Dual-route and parallel-dis-
tributed-processing approach@sychological Review,
100,589-608.

Coltheart, M., & Rastle, K. (1994). Serial processing in
reading aloud: Evidence for dual-route models of read-
ing. Journal of Experimental Psychology: Human Per-
ception and Performance0, 1197-1211.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler,
J. (in press). DRC: A dual-route cascaded model of
visual word recognition and reading alolRkycholog-
ical Review.

Forster, K. I., & Chambers, S. M. (1973). Lexical access

and naming timeJournal of Verbal Learning and

Verbal Behavior12, 627—-635.

Forster, K. I., & Forster, J. C. (1990). User's guide to the
DMASTR display system: Laboratory software for
mental chronometry. [unpublished document]

Unwin.

Baker, R. G., & Smith, P. T. (1976). A psycholinguistic Garde, P. (1968).’Accent.Paris: Presses Univ. France.
study of English stress assignment rulesanguage Humphreys, G. W., & Evett, L. J. (1985). Are there inde-

and Speech]9, 9-27.
Baptista, B. O. (1984). English stress rules and native

speakersLanguage and SpeecB7, 217-233.
Beckman, M. E. (1986)Stress and non-stress acceforis:

Dordrecht.

Butterworth, B. (1992). Disorders of phonological encod-

ing. Cogntion,42, 261-286.

Brown, P., Lupker, S. J., & Colombo, L. (1994). Interacting
sources of information in word naming: A study of

pendent lexical and nonlexical routes in word process:
ing? An evaluation of the dual-route theory of reading.
Behavioral and Brain Science8, 689—-740.

Jared, D. (1997). Spelling-sound consistency affects thi

naming of high-frequency wordsournal of Memory
and Language36, 505-529.
Kelly, M. H., & Bock, J. K. (1988). Stress in timdournal
of Experimental Psychology: Human Perception and
Performance 14, 389-403.



364 RASTLE AND COLTHEART

Kelly, M. H., Morris, J., & Verrekia, L. (1998). Ortho- Rastle, K., & Coltheart, M. (1998). Whammies and double
graphic cues to lexical stress: Effects on naming and  whammies: The effect of length on nonword reading.

lexical decisionMemory & Cognition,26, 822—832. Psychonomic Bulletin and Reviet, 277-282.
Kingdon, R. (1958).The groundwork of English stress. Rastle, K., & Coltheart, M. (1999a). Serial and strategic
3 London: Longm'an. ) processing in reading aloudournal of Experimental

Kiicera, H., & Francis, W. N. (1967 omputational anal- Psychology: Human Perception and Performares,
ysis of present-day American EngligProvidence, RI: 482-503.
Brown Univ. Press. Rastle, K., & Coltheart, M. (1999b). Lexical and nonlexical

Laudanna, A., Burani, C., & Cermele, A. (1994). Prefixes as

grozcge5553|ri% unitsLanguage and Cognitive Processes, perimental Psychology: Human Perception and Per-
Levelt, W_.] M. (1992). Accessing words in speech pro- formance 25, 461-481.

P : 9 PEECh P05 denberg, M. S., & McClelland, J. L. (1989). A distrib-

duction: Stages, processes and representai@ogni- .

tion. 42. 1-22. uted, developmental model of word recognition and
Levelt, W. J. M., & Wheeldon, L. (1994). Do speakers have  naming.Psychological Reviev6, 523-568.

access to a mental syllabarg®gnition,50,239-269. Seidenberg, M. S., Waters, G. S., Barnes, M. A., &
Liberman, M., & Prince, A. S. (1977). On stress and lin-  Tanenhaus, M. K. (1984). When does irregular spell-

phonological priming in reading aloudournal of Ex-

guistic rhythm.Linguistic Inquiry,8, 249—336. ing or pronunciation influence word recognition?
Marslen-Wilson, W., Tyler, L. K., Waksler, R., & Older, L. Journal of Verbal Learning and Verbal Behavior,

(1994). Morphology and meaning in the English men- 23, 383—-404.

tal lexicon.Psychological Reviewi01, 3-33. Smith, P. T., & Baker, R. G. (1976). The influence of

Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects English spelling patterns on pronunciatidmurnal of
of frequency on visual word recognition tasks: Where  Verbal Learning and Verbal Behaviot5, 267-285.
are they?Journal of Experimental Psychology: Gen-Taft, M., & Forster, K. (1975). Lexical storage and retrieval
eral, 118,43-71. of prefixed words.Journal of Verbal Learning and
Paap, K. R., & Noel, R. W. (1991). Dual-route models of  verpal Behavior.14, 637—647.
print to sound: Still a good horse radesychological  Trammell, R. (1978). The psychological reality of underly-
Research53, 13-24. ing forms and rules for stresgournal of Psycholin-
Patterson, K. E., & Morton, J. (1985). From orthography to guistic Research7, 79-94.
phonology: An attempt at an old interpretation. In K.
Patterson, J. C. Marshall, & M. Coltheart (EdsSyr-
face dyslexigpp. 335-359). London: Erlbaum.
Patterson, K. E., & Shewell, C. (1987). Speak and spel%
Dissociations and word-class effects. In M. Coltheart, orz : ) o
G. Sartori, & R. Job (Eds.JThe cognitive neuropsy- routes or one in reading aloud?‘A connectionist dual-
chology of languagépp. 273-294). London: Erlbaum. process modeIJgurnaI of Experimental Psychology:
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patter- ~ Human Perception and Performanc}, 1131-1161.
son, K. (1996). Understanding normal and impaired
word reading: Computational principles in quasi-regu{Received November 3, 1998)
lar domains Psychological Reviewi,03,56-115. (Revision received August 18, 1999)

Williams, B. (1987). Word stress assignment in a text-to-
speech synthesis system for British Engli€omputer
Speech and Languag®, 235-272.

i, M., Houghton, G., & Butterworth, B. (1998). Two



	THE DUAL-ROUTE THEORY OF READING
	FIG. 1

	DUAL-ROUTE THEORY AND THE PROBLEM OF POLYSYLLABIC WORDS
	EXPERIMENT 1
	TABLE 1

	A SET OF NONLEXICAL RULES FOR READING DISYLLABIC WORDS AND NONWORDS ALOUD
	FIG. 2
	TABLE 2

	EVALUATING THE NONLEXICAL STRESS RULES
	TABLE 3

	EXPERIMENT 2
	EXPERIMENT 3
	TABLE 4

	GENERAL DISCUSSION
	APPENDIX A
	APPENDIX B
	APPENDIX C
	REFERENCES

