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Serial and Strategic Effects in Reading Aloud

Kathleen Rastle and Max Coltheart

Macquarie University

M. Coltheart and K. Rastle (1994) reported that the size of the regularity effect on
word-naming latency decreases across position of irregularity, implicating a serial process in
reading aloud. In response to criticism by D. C. Plaut, J. L. McClelland, M. S. Seidenberg, and
K. Patterson (1996), these results were replicated with monosyllabic words that had been
controlled for consistency. In a second experiment, participants named nonword- or
regular-word targets mixed with either first-position irregular fillers or third-position irregular
fillers. Target naming was slowed when first-position irregular fillers were present, compared
with target naming when third-position irregular fillers were present. These data suggest that
participants can slow use of the nonlexical route if faced with very costly exception words.
Simulations using the dual-route cascaded model (M. Coltheart, B. Curtis, P. Atkins, &

M. Haller, 1993) are presented.

The term dual-route theory refers to a particular class of
theories of visual word recognition and reading aloud. The
defining feature of such theories is the postulate that there
are two different procedures for converting print to speech: a
dictionary-lookup, or lexical, procedure and a rule-based, or
nonlexical, procedure (expositions of dual-route theories can
be found in, e.g., Baron & Strawson, 1976; Coltheart, 1978,
1985; Ellis & Young, 1988; Forster & Chambers, 1973;
Gough & Cosky, 1977; Morton & Patterson, 1980; Ogden,
1996; Paap & Noel, 1991; Patterson & Morton, 1985;
Patterson & Shewell, 1987).

Coltheart, Curtis, Atkins, and Haller (1993; see also
Coltheart, Langdon, & Haller, 1996; Coltheart & Rastle,
1994; Rastle & Coltheart, 1998, 1999) described a computa-
tional realization of dual-route theory: the dual-route cas-
caded (DRC) model. The model described in these studies is
computational in the sense that it exists as a computer
program that can perform the tasks typically used in research
on reading, such as lexical decision and reading aloud. The
number of processing cycles needed to perform any such
task with a particular stimulus is an analogue of the number
of milliseconds needed by human beings, so direct simula-
tions of experiments that yield human reaction times (RTs) is
straightforward.

Four other models of reading, which are computational in
this sense, currently exist: the parallel-distributed-process-
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ing (PDP) implementations described by Plaut, McClelland,
Seidenberg, and Patterson (1996), the multiple-levels model
of Norris (1994), the connectionist dual-process model of
Zorzi, Houghton, and Butterworth (1998), and the multiple
readout model of Grainger and Jacobs (1996). The DRC
model differs from these models in that it is applicable both
to the simulation of lexical decision and to the simulation of
reading aloud (i.e., it is a model of both visual word
recognition and reading aloud). The simulations contained
in the Norris, Zorzi et al., and Plaut et al. implementations
are of reading aloud only; those models, in their present
form, have no procedure for making lexical decisions.
Similarly, the simulations in Grainger and Jacob’s model are
of lexical decision only; the muitiple readout model, in its
current form, does not read aloud.

Because we are concerned in this article with reading
aloud rather than with lexical decision, we focus on compar-
ing the DRC model with the multiple-levels model, the
connectionist dual-process model, and the PDP implementa-
tions; these are the only current computational models of
reading aloud.

The DRC Model

The overall architecture of the DRC model is shown in
Figure 1. As is evident, the model has both a dictionary-
lookup (lexical) procedure for converting print to speech and
a rule-based (nonlexical) procedure for such conversion.

The Lexical Route of the DRC Model

The lexical route consists of a sequence of five processing
components or levels: feature detection, letter identification,
orthographic lexicon, phonological lexicon, and phoneme
activation. The first three of these levels are simply a
generalization of the interactive activation (IA) model of
visual word recognition (McClelland & Rumelhart, 1981;
Rumelhart & McClelland, 1982). However, instead of being
restricted just to four-letter monosyllabic monomorphemic
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Figure 1. The architecture of the dual-route cascaded model.

words (as was the case with the IA model), the DRC model
operates with words of any length up to seven letters! and is
not restricted to monomorphemic words (though is restricted
to monosyllabic words). Apart from these differences, the
architecture, connectivity, and mode of operation of these
three levels are identical to those in the IA model.

The feature level consists of eight sets of feature units,
one for each of the eight possible letter positions of an input
string. Each of these eight sets of feature units contains 16
feature-present units and 16 feature-absent units (the number
is 16 because the system operates with the 16-stroke font
used by Rumelhart & Siple, 1974, exactly as in the 1A
model).

The letter level also consists of eight sets of units. Each of
these sets of letter units contains 27 units, one for each letter
of the alphabet and one coding the absence of any letter in
that position in the input string.

Each unit at the feature level for a particular input position
has an excitatory connection to all of the letters for that input
position that possess that feature and an inhibitory connec-
tion to all of the letters that do not. There are no connections
from the letter level back to the feature level, nor are there
inhibitory connections within each set of feature units. At the
letter level, however, there is within-level inhibition: for
each letter position, all letter units have inhibitory connec-
tions to all other letter units.

The orthographic lexicon contains 7,980 units, one unit
for each monosyllabic word in the CELEX English database
(Baayen, Piepenbrock, & van Rijn, 1993), except that
infrequent words of foreign origin such as kvass or lakh have
been culled. Each word unit in this lexicon has inhibitory
connections to all other word units in the orthographic

lexicon. Each word unit also has a parameter representing its
frequency; as in the IA model, the value of this parameter
ranges from —0.05 (for the least frequent word) to 0.00 (for
the most frequent word). These frequency parameters cause
the rate at which activation rises to be positively related to
word frequency.

For each position at the letter level, every letter unit has
excitatory connections to every entry in the orthographic
lexicon representing a word that possesses that letter in that
position and inhibitory connections to all other word units.
Furthermore, each word unit has excitatory connections
back to all of the letter units that represent its spelling and
inhibitory connections to all other letter units.

The phonological lexicon contains 7,117 units, with each
unit representing the pronunciation (in Australian English)
of one of the entries in the orthographic lexicon. Each word
unit in this lexicon has inhibitory connections to all other
word units in the phonological lexicon. These units are
frequency coded in the same way as are the entries in the
orthographic lexicon. Heterographic homophones such as so
and sew have separate entries in the orthographic lexicon but
activate the same entry in the phonological lexicon. Homo-
graphic heterophones such as lead have a single entry in the
orthographic lexicon, which activates two different entries in
the phonological lexicon. Apart from these cases, connec-
tions from the orthographic lexicon to the phonological
lexicon are one to one.

The phoneme level consists of eight sets of phoneme
units. Each of these sets contains 44 phoneme units, one for
each of the 43 phonemes in the DRC model’s phonemic
vocabulary (see the list of these phonemes in Appendix A)
and one that codes the absence of a phoneme in that position
in the output string. Each entry in the phonological lexicon
has excitatory connections to all of its constituent phonemes
and inhibitory connections to all other phonemes. In turn,
each phoneme unit has excitatory connections back to all
word units in the phonological lexicon that contain that
phoneme in that position and inhibitory connections back to
all other units in the phonological lexicon.

The DRC Model’s Nonlexical Route

The nonlexical route in the DRC model is a sequence of
four processing components or levels: feature detection,
letter identification, grapheme—phoneme conversion, and
phoneme activation. The feature, letter, and phoneme levels
are shared with the lexical route and have been described.
The rules used for grapheme-phoneme conversion are
described in the next section.

The nonlexical route operates as follows. For the first N
processing cycles (N is set to 10 cycles in the standard set of
parameters), the route is inoperative. At Cycle 11, grapheme—
phoneme correspondence (GPC) rules are applied to the first

1 The model has eight sets of letter units, but its reading is
nevertheless restricted to strings of up to seven letters in length
only; the reasons for this are discussed in Coltheart, Rastle, Perry,
Langdon, and Ziegler (1998).
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letter of the input string. After a further M processing cycles
have elapsed (M is set to 17 cycles in the standard set of
parameters), the next letter of the string becomes available
for nonlexical translation: The input to the GPC rules is now
a two-letter string. Thus, the string becomes available for
translation serially, letter by letter, from left to right; the
translation process then operates on the entire available
string in parallel.

Nonwords are not processed entirely by the nonlexical
route, however. They activate word neighbors in the ortho-
graphic lexicon, which then activate phonological represen-
tations of words and their phonemes. Figure 2 displays
activation in the four phoneme units in the stimulus item
flot. Note that whereas activation for each of the phoneme
units rises in serial order, activation for each of the
phonemes does not rise at exactly the same rate. These
activations would rise at the same rate only if the nonlexical
route provided these units the sole source of activation.
These phoneme units also receive activation from the lexical
route by means of their word neighbors, however, which
include flat, flow, and foot. The amount of lexical activation
enjoyed by each phoneme unit will thus depend on what the
word neighbors of the input string happen to be.

The Rules Used by the DRC Model’s Nonlexical Route

The DRC model’s nonlexical route uses four types of
position-specific rules, which are applied to every letter
string on the basis of the strength of the parameter control-

Phoneme unit activation

DRC processing cycles

Figure 2. Therise of activation in phonemes /f/, /1/, /Q/, and /t/ in
the naming of the word floz. DRC = dual-route cascaded.
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ling GPC activation: single-letter rules, multiletter rules,
context-sensitive rules, and output rules. For a given portion
of a letter string (that portion which has become available for
translation), multiletter rules are applied before single-letter
rules, so that, for example, if the letters che in the item chean
were available for translation, the rule ch — /J/ would be
applied before the rules ¢ — /k/ and 2 — /h/. The full set of
rules used by the nonlexical route is given in Appendix B.

In early work on the DRC model, Coltheart et al., 1993,
explored a learning algorithm that was capable of discover-
ing GPC rules when exposed to a corpus of word spellings
and pronunciations. We soon abandoned the idea that the
DRC model’s GPC rules should be derived by means of a
learning algorithm, however, because unless the learning
algorithm itself was psychologically real (i.e., operated in
just the same way as children operate when they are learning
GPC rules), there would be no reason to expect that the set of
algorithm-derived GPC rules would have any relation to the
set of GPC rules the research participants would possess.
Because there is no agreement on the question of how
children learn GPC rules as they learn to read, there is no.
way of guaranteeing the psychological reality of any learn-
ing algorithm that might be used and hence no justification
for adopting as the model’s particular set of GPC rules those
that the algorithm learned.

It is therefore important to see this rule set not as the
outcome of the application of a learning algorithm but as a
set of hypotheses about what GPC rules skilled readers
possess. To the extent to which these hypotheses are false,
the actual pronunciations of nonwords yielded by the DRC
mode] will differ from the actual pronunciations that human
readers will produce. No doubt different readers will have
slightly different sets of GPC rules, because it is certainly
not always the case that all people assign exactly the same
pronunciation to a particular nonword (Masterson, 1985).
Thus, the nonword pronunciations assigned by the DRC
model will not be the pronunciations assigned by every
person, because people do not even agree among themselves
on these pronunciations. All we seek to achieve is that for all
nonwords, the DRC model’s pronunciation is the one that
the majority of readers assign.

One refinement of dual-route modeling that goes beyond
the DRC model in its current form is the idea that different
GPC rules might have different strengths, with the strength
of correspondence being a function of, for example, the
proportion of words in which the correspondence occurs. We
have not explored the notion of rule strength in the DRC
model, although it would be simple to implement, because
we are not aware of any work demonstrating that any kind of
rule-strength variable has effects on naming latencies when
other variables known to affect such latencies, such as
neighborhood size (e.g., Andrews, 1992) and string length
(e.g., Weekes, 1997), are controlled.

What Is an Exception Word?

Although some authors (e.g., Plaut et al., 1996) have
striven to dissolve the distinction between consistency and
regularity by claiming that exception words are simply those
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that are maximally inconsistent, whereas regular words are
those that are maximally consistent, it was recognized as
long ago as 1979 in the first article on the effects of
consistency on naming latency (Glushko, 1979; see his
Footnote 3, p. 684) that the two concepts are distinct.

Almost all of the empirical work on the effects of
consistency on reading aloud has used the same definition of
consistency: A word is consistent if the pronunciation of its
orthographic body (the phonological rime) is the same in all
words that share its orthographic body. No doubt one could
seek to define other forms of consistency based on other
orthographic units, but there is not adequate empirical
evidence that consistency in relation to any other ortho-
graphic unit has any effect on reading performance.

An exception word is one whose pronunciation as derived
from the application of a set of GPC rules differs from its
dictionary pronunciation; a regular word is one for which
these two pronunciations are the same (Baron & Strawson,
1976; Coltheart, 1978). Words defined as regular by a set of
hypotheses regarding GPC rules may be consistent (e.g.,
deep) or inconsistent (e.g., save). Exception words defined
by such a set of hypotheses also may be consistent (e.g.,
calf) or inconsistent (e.g., have). As long as regularity is
defined by a clear set of spelling—sound rules, and consis-
tency is defined as based on a particular orthographic unit,
these variables can be orthogonally manipulated, and if they
can be orthogonally manipulated then the argument that
regularity and consistency are the same thing is fallacious.

There may be disputes about whether a particular word is
exceptional or regular. However, such disputes are not
disputes about the definition of regularity; they are disputes
about the GPC rules being used. We have provided in
Appendix B the complete set of the DRC model’s GPC
rules, and our classification of words as regular or excep-
tional is based on these rules. Given this set of GPC rules,
the decision about whether a particular monosyllabic word is
regular or exceptional is automatic.

Lexical Decision

The lexical decision task is performed by the DRC model
according to the decision procedures proposed by Coltheart,
Davelaar, Jonasson, and Besner (1977). The yes decision is
made if any entry in the orthographic lexicon reaches a
criterial activation level (typically .60). The no decision is
made if a time deadline (expressed in terms of number of
processing cycles) elapses before the yes decision has been
made. This deadline is flexible in the sense that it is
computed on every trial on the basis of the summed
activation of all units in the orthographic lexicon measured
at some stage in processing that is earlier than any yes
decision time. The larger this sum is, the longer the
computed deadline will be, reflecting the fact that the
likelihood that the input string is a word will be positively
correlated with the value of this summed activation.

When the DRC model carries out lexical decisions
according to this procedure, its yes latencies are inversely
related to word frequency, and they are positively related to
the neighborhood size of the word but only when the word is

of low frequency. Both of these effects have been reported in
studies of human lexical decision (e.g., Andrews, 1989,
1992). Its no latencies are directly related to the neighbor-
hood size of the nonword and are longer for pseudohomo-
phones than for nonpseudohomophones, as is true for people
(e.g., Coltheart et al., 1977).

Grainger and Jacobs (1996) proposed the addition of a
third decision criterion to the two originally proposed by
Coltheart et al. (1977), namely, a “fast-guess” mechanism
by which a yes decision may be made on the basis of the
summed activation of the orthographic lexicon. Because this
summed activation is a datum yielded by the DRC model,
there is no obstacle to using the three-criteria procedure with
the DRC model if the human data indicate that this is
required.

Reading Aloud

The model is deemed to have generated a reading-aloud
response when a sufficient level of activation is present at the
phoneme level for each of the relevant phonemes and a nuil
phoneme representing the end of the string. Specifically,
within each of these phoneme sets there must be a phoneme
unit that has reached a criterial level of activation (we used
43 for this level). The processing cycle at which this is
achieved by the model is the model’s naming latency. In rare
cases, it might be possible for two or more phoneme units in
the same phoneme set to rise above criterial activation; if
this multiple activation occurs, the phoneme with the highest
activation is selected for the naming response when the other
relevant phonemes have reached criterial level.

By manipulating the activation-criterion parameter in the
model, we were able to simulate reading aloud under
speeded and unspeeded conditions. Given sufficient time (a
high-activation criterion), the model should respond cor-
rectly to all stimuli, because people read exception words
correctly when reading at their leisure. When a stricter
activation criterion is used, however, the model should make
regularization errors, because people make such errors under
speeded naming conditions. Consider the activation function
shown in Figure 3, which represents the naming of the
exception word wholes. Here, the model will make a
regularization error at any activation criterion less than .47.

The Parameters of the DRC Model

The various parameters of the DRC model and their
standard values are listed in Table 1. We arrived at these
values after several years of work with the DRC model,
simulating published data from a large number of studies of
human lexical decision and reading aloud. We do not mean
to imply that all simulations from the DRC model would use
these exact values, because we provide evidence below that
strategic effects in human reading experiments can be
simulated if the parameters of the DRC model are thought of
as being strategically variable.

This modeling strategy might seem to render the model
immune from falsification, but that is not the case. There are
many logically possible empirical results that could not be
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Figure 3. The rise of activation in phonemes /w/ and /b/ in the
naming of the word wholes. DRC = dual-route cascaded.

simulated by the model no matter what parameters are
used—for example, faster reading of nonwords than regular
words, or faster reading of exception words than regular
words. These may seem crude examples because there are
no models that could predict such effects; but there are
subtler effects for which this is not the case, one of which is
the subject of this article. If there is an effect of irregularity
on reading words aloud that is independent of the position in

the word of the irregular GPC, then the DRC model, by
virtue of its serial GPC procedure, is false.

The Parallel Models

And, we argue, if the effect of irregularity on reading
words aloud is in fact dependent on the position in the word
of the irregular correspondence between a grapheme and a
phoneme, declining monotonically as this position moves
from left to right, then models that operate solely in parallel,
such as the PDP implementations of Plaut et al. (1996), the
connectionist dual-process model (Zorzi et al., 1998), and
the multiple-levels model (Norris, 1994), are false.

Plaut et al. (1996), Zorzi et al. (1998), and Norris (1994)
have all described models that, though operating under
extremely different architectures and processing assump-
tions, have simulated exception word and nonword reading
and the well-known Regularity X Frequency interaction
(e.g., Paap & Noel, 1991; Seidenberg, Waters, Bames, &
Tanenhaus, 1984). This interaction—that exception words
yield longer naming latencies than regular words but only if
they are of low frequency—was once interpreted as very
strong evidence for dual-route theories of reading. If a model
that does not have a dual-route architecture also yields these
effects in simulations, however, then clearly it is wrong to
claim that such effects require that the human reading
system has a dual-route architecture. Something subtler is
now needed to adjudicate between these models.

An Approach to Model Comparison and Evaluation

There are, of course, a number of different approaches to
the task of adjudicating between competing models (see,
e.g., Grainger & Jacobs, 1996; Jacobs & Grainger, 1994).
Our approach is the one advocated by Coltheart and
Coltheart (1972). Referring to models of visual word
recognition (Rumelhart, 1970) and concept learning (Bower

Table 1
Simulation Parameter Set
Parameter Value Parameter Value
Feature noise 0.000 Lat: Letters to letters 0.000
Letter noise 0.000 Inh: Letters to words —0.435
Orthographic noise 0.000 Exc: Letters to words 0.070
Phonological noise 0.000 Exc: Phonological to words 0.200
Phoneme noise 0.000 Lat: Words to words —0.060
Activation rate 0.200 Exc: Words to phonological 0.200
Letter decay 0.000 Inh: Phoneme to phonological —0.160
Orthographic decay 0.000 Exc: Phoneme to phonological 0.040
Phonological decay 0.000 Lat: Phonological to phonological —0.070
Phoneme decay 0.000 Inh: Phonological to phoneme 0.000
Frequency scale 1.000 Exc: Phonological to phoneme 0.140
Inh : Features to letters —0.150 Lat: Phoneme to phoneme =0.15
Exc: Features to letters 0.005 Exc: GPC to phoneme 0.055
Inh : Words to letters 0.000 GPC: Activation offset 10.000
Exc: Words to letters 0.300 GPC: Left-to-right interval 17.000
Pronunciation latency: Minimum activation 0.430

Note.
correspondence.

Inh = inhibition; Exc = excitation; Lat = lateral inhibition; GPC = grapheme—phoneme
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& Trabasso, 1964), they argued that definitive adjudication
between competing models occurs as a result of experimen-
tal work that directly investigates basic postulates of the
models. In support of their argument, they cited examples of
models (e.g., Bower & Trabasso, 1964) that provided close
numerical fits to a variety of data sets but that were
subsequently rejected on the basis of experimental work
designed to test their fundamental assumptions or postulates
(Trabasso & Bower, 1966).

Broadbent (1958, p. 309) argued for exactly this approach
to theory adjudication, and Schweickert and Boggs (1984)
endorsed the approach thus:

If a detailed theory is falsified, in itself this is not progress
unless the set of remaining theories is notably smaller as a
result. [Broadbent] suggests that the optimal strategy is to ask
questions so that each answer reduces the number of remain-
ing theories by half. (p. 272)

According to this approach, then, what should be done is
to seek some rather general proposition—a Proposition
X—about reading whose truth is asserted by one of the
models being considered (and indeed by a whole class of
models to which this model belongs) and whose truth is
denied by the other model we are considering (and indeed by
another whole class of models to which this other model
belongs). Once such a proposition is identified, an experi-
ment that seeks to determine the truth or falsity of this
proposition should not only allow us to adjudicate between
the two particular models we are specifically considering but
also allow us to achieve Broadbent’s (1958) desideratum of
halving the number of defensible models.

The Position-of-Irregularity Effect

This adjudication strategy was exactly the one that we had
adopted earlier (Coltheart & Rastle, 1994). In our earlier
study, X was the following claim: All of the processes by
which print is converted to speech are parallel processes.
The truth of this claim is asserted by the PDP model and the
multiple-levels model; its falsity is asserted by the DRC
model (because in that model GPC conversion is a serial
left-to-right process).

Following the dual-route explanation of the Regularity X
Frequency interaction, we (Coltheart & Rastle, 1994) pre-
dicted that for low-frequency exception words, the cost of
irregularity would be modulated by the position of the first
spelling—sound irregularity in any word. Because nonlexical
information about exception words is delivered to the
phoneme system serially, words with irregularities in the
first position should suffer more than words with irregulari-
ties in the fifth position. For example, when the low-
frequency word chef is read, conflicting nonlexical informa-
tion about the first phoneme /S/ may arrive at the phoneme
system before lexical processing is completed, causing a
latency, or accuracy, cost to the reader. Alternatively, when
the low-frequency word swap is read, lexical processing will
most likely finish before conflicting nonlexical information
about the third phoneme /Q/ arrives at the phoneme system.

In our earlier study (Coltheart & Rastle, 1994), we
examined two-syllable words with irregularities in the first

through fifth positions. Controlling for neighborhood size,
log,o word frequency, and number of letters, we found that
the cost of irregularity (as determined by the irregular
target’s RT compared with that of a matched regular control)
decreased monotonically and linearly over the five positions
of irregularity, so that words with irregularities at the fifth
phoneme position showed very little cost, whereas words
with irregularities at the first position showed nearly a 60-ms
cost. We went on to simulate this position-of-irregularity
effect with the words chef, tomb, and glow. The simulation
data supported our human data, in that the number of cycles
required to name each word decreased over each position of
irregularity.

We (Coltheart & Rastle, 1994) concluded that the mono-
tonic decrease in the size of the regularity effect as a function
of position of irregularity in the human and simulation data
supported the dual-route model of reading and its computa-
tional version, the DRC model, and refuted any model that
operates solely in parallel. Plaut et al. (1996), however,
countered this conclusion by suggesting that a confound
may have existed between position of irregularity and
consistency, which may have driven the effect. Specifically,
they suggested that those words with first-position irregulari-
ties may have generally been less consistent than those
words with later position irregularities and that the decrease
in latency cost over position of irregularity might, therefore,
have had nothing to do with the serial nature of reading, but
may instead have simply been an artefact of this confound.

One difficulty with Plaut et al.’s (1996) claim is that it is
not at all clear how one should go about measuring
consistency. As discussed, consistency has usually been
defined with respect to the body of a word. This definition is,
of course, troublesome for words like chute, which contain
consistently pronounced bodies but are clearly irregular and
inconsistent in the first GPC.

Plaut et al. (1996) realized the difficulty with their claim
given the definition of consistency, and so they examined the
consistency of each word in our (Coltheart & Rastle, 1994)
small simulation at the irregular GPC instead of at the body.
They examined the consistency of chef by calculating the
ratio of friends to enemies at the ch segment, the consistency
of tomb by examining the ratio of friends to enemies at the fo
and the omb segments, and the consistency of glow by
examining the ratio of friends to enemies at the ow segment.
On the basis of these calculations, they suggested that words
with first-position irregularities were generally less consis-
tent than words with second- or third-position irregularities.

As they suspected, Plaut et al. (1996), using these three
words, were able to simulate the position-of-irregularity
effect on their single-route model of reading, suggesting that
the effect may not have arisen from a serial procedure.
Unfortunately, in our 1994 study we used a disyllabic
stimulus set, and as such, it is virtually impossible to do a
post hoc analysis of our data to assess the validity of Plaut et
al.’s claim regarding consistency. Consistency is difficult, if
not impossible, to define for polysyllabic words because
segmenting the word into orthographic components requires
syllabification. In a word like bandage, for example, it is not
clear whether the body of the first syllable is -and or -an.
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Similarly, it is not clear in this example whether the coda in
the first syllable is -nd or -n. Thus, even if one definition of
consistency could be agreed upon, performing a post hoc
analysis of our 1994 data seems a rather daunting task.

There is a second disadvantage to using disyllabic stimuli:
Neither the parallel models nor the DRC model can deal
with such stimuli, and therefore model simulations using the
actual experimental stimuli, which are of course highly
desirable, cannot be carried out. For these reasons, we
designed the following experiment, in which we used
monosyllabic regular and exception words to investigate the
effect of position of irregularity.

Experiment 1

In Experiment 1 we sought to replicate the position-of-
irregularity effect originally reported in our earlier study
(Coltheart & Rastle, 1994) with the use of a monosyllabic
stimulus set controlled for consistency across position of
irregularity. Even when consistency across position of
irregularity is controlled, models with a serial procedure
such as the DRC model predict a position-of-irregularity
effect, with first-position irregular words showing a greater
cost of irregularity than words with later irregularities.
Models that operate solely in parallel do not predict this
serial effect.

Our success in demonstrating that the position-of-
irregularity effect persists despite controlling for consistency
across position of irregularity depends, in part, on the
adequacy of the consistency measure that we adopt. As
discussed, traditional measures of consistency as based on
the orthographic body will not capture the inconsistencies in
many first-position irregular words and are thus unsuitable.
However, the means by which Plaut et al. (1996) analyzed
the words chef, tomb, and glow for consistency (by examin-
ing the ratio of friends to enemies at the inconsistent
segment only) seems rather arbitrary; in our assessment of
Plaut et al.’s claim, we thus endeavored to adopt a more
rigorous approach to the measurement of consistency than
they had suggested.

Several such measures already exist (e.g., Berndt, Reggia,
& Mitchum, 1987; Rosson, 1985; Treiman, Mullennix,
Bijeljac-Babic, & Richmond-Welty, 1995; Venezky & Mas-
saro, 1987), but for various reasons all of these measures are
unsuitable for our purposes. All of these measures provide
estimates of the statistical regularity of spelling—sound
correspondences by counting the number of times a given
orthography maps to one phonology relative to how many
times that orthography maps to a different phonology in a
sample of English words.

A measure used to examine the statistical regularity of a
given orthography should maximize reference to regularities
within the language in order to obtain realistic and uninflated
measurements of inconsistency. These regularities can be
captured by using position-specific information, by using
context-sensitive information, and by considering as graph-
emes those items that are separated by an intervening letter
(e.g., a.e in shape). A reference to position specificity is
useful in maximizing regularities in the language because

the pronunciation of an orthographic segment can often be
predicted by its position in a letter string. The grapheme y,
for example, is most often pronounced /j/, as in yarn, at the
beginning of a word; in the middle of a word, it is most often
pronounced /I/, as in gym; at the end of a word, it is most
often pronounced /2/, as in fly. Context-sensitive information
is useful in the same sense. For example, the statistical
regularity of the ¢ — /s/ correspondence is increased
dramatically if the identity of the following letter is consid-
ered. Context-sensitive information can be derived system-
atically by examining for consistency orthographic unmits
larger than the grapheme. We defined a grapheme as the
spelling of a phoneme and therefore considered as graph-
emes those items with intervening letters. This classification
also maximizes an assessment of regularities in the language
and is thus desirable in a measurement of overall word
consistency. Furthermore, a sound measure of word consis-
tency should make reference to all monosyllabic items in the
language and—for our purposes—must make reference to
an Australian-English lexicon.

Berndt et al. (1987) provided probabilities of all GPCs’
based on the analyses of Hanna, Hanna, Hodges, and Rudorf
(1966). Although Berndt et al.’s measurement adopts a
desirable definition of grapheme—including as graphemes
those items with an intervening letter—it is not position
specific, it is based on monosyllabic and polysyllabic
correspondences, and it is based on American English.
Another approach was taken by Venezky and Massaro
(1987), who designed a fluency measure similar that used by
Rosson (1985) but that eliminated the confound between
spelling—sound regularity and grapheme frequency in Ros-
son’s measure. Their second-order fluency measure exam-
ined the statistical regularity of all GPCs; it was position
specific and made reference to all monosyllabic words in
English, but it did not recognize as graphemes those items
with an intervening letter. Given that such a large number of
the items that we used in Experiment 1 contain such
graphemes, we deemed this measure unsuitable. Treiman et
al. (1995) designed a consistency measure that deals effec-
tively with most of these problems. Their H statistic
considers the number of pronunciations for a given ortho-
graphic unit and the probability that those pronunciations
will occur for that orthographic unit. The measure is position
specific and adopts a desirable definition of grapheme.
However, Treiman et al. calculated this statistic only for
monosyllabic, monomorphemic consonant-vowel—conso-
nant words, a sample numbering only 1,329. None of these
measures is based on Australian English.

Recognizing the inadequacies of all of these measures, we
endeavored to design a consistency calculation for the
stimuli used here that takes into account the best features of
all of these measurements and is based on Australian
English. Our calculation is position specific, captures context-
sensitive information, adopts a desirable definition of graph-
eme, and makes reference to all monosyllabic words in the
DRC model’s Australian-English database—a healthy sam-
ple numbering 7,980. The measure calculates a consistency
index for each of five orthographic segments on the basis of
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the number of friends of each segment and the number of
enemies of each segment and is detailed below.

Method

Farticipants. Participants were 20 first-year psychology stu-
dents from Macquarie University, Sydney, Australia. All had
normal or corrected-to-normal vision and were native Australian-
English speakers. They were given course credit for their
participation.

Materials. Eighty-eight words with irregular GPCs were cho-
sen from the CELEX English database (Baayen et al., 1993). All
target words were monosyllabic, had between three and six letters,
and had Kucera and Francis (1967) frequencies between 0 and 22.

All words had irregular GPCs in either the first position, the
second position, or the third position and were divided into three
lists on that basis. There were 20 words with first-position
irregularities, 39 words with second-position irregularities, and 29
words with third-position irregularities.

On the basis of Plaunt et al.’s (1996) criticisms regarding a
possible confound between consistency and position of irregularity,
we examined each irregular target word for consistency at five
levels: the head, the body, the antibody, the nucleus, and the coda.
The head consists of all consonants before the first vowel, the body
consists of the first vowel plus the rest of the word, the antibody
consists of the head plus the first vowel, the nucleus consists of the
vowel only, and the coda consists of the consonants following the
nucleus. In this way, the head plus the body represents the entire
word, as does the antibody plus the coda.

To identify each of these orthographic segments, however, we
first examined the phonological form of the word. We have termed
the five relevant phonological segments here as the onser (head),
the rime (body), the antirime (antibody), the torso (nucleus), and
the tail (coda). Once each of these components was isolated, we
derived the spelling of each segment.

For each of these orthographic segments, we calculated a
consistency index, C, based on the number of friends and enemies
of that segment:

C = [(friends — enemies)/(friends + enemies)].

These calculations were averaged across segments, such that a
value of —1.0 indicated perfect inconsistency and a value of +1.0
indicated perfect consistency. The consistency calculation for the
word chef is shown in Table 2. ,

The average consistency index of first-position irregular words
was .392, the average of second-position irregular words was .181,
and the average of third-position irregular words was .219. Thus,
consistency was confounded across position of irregularity, as Plaut
et al. (1996) suspected, but in a direction that works against our

Table 2
The Calculation of Consistency Index C for the Word Chef
No. of No. of C (#F — #B)/

Segment friends (#F) enemies (#E) (#F + #E)
Head 6 151 —.924
Body 3 0 1.000
Antibody 2 9 —.636
Nucleus 516 30 .890
Coda 32 0 1.000
Average 266

hypothesis: The first-position irregular words were more consistent
than were words with later irregularities. The entire consistency
analysis is contained in Appendix C. First-position irregular words
had an average of 2.6 neighbors. Second-position irregular words
had 7.44 neighbors, and third-position irregular words had 3.45
neighbors. Matching on the basis of consistency and neighborhood
is difficult, if not impossible, when dealing with irregular words.
These factors were thus controlled by means of an analysis of
covariance (ANCOVA).

Each irregular target word was then matched with a regular
control word. Regular words were matched to irregular words on
number of letters, initial phoneme, and frequency. In cases in which
initial-phoneme matching was not possible, regular words were
matched on the basis of phonetic class. The same consistency
analysis was performed on the regular words. Results of this
analysis showed that the first-position regular words averaged .885,
the second-position regular words averaged .859, and the third-
position regular words averaged .896. First-position regular words
had an average of 5.25 neighbors. Second-position regular words
had 8.10 neighbors, and third-position regular words had 4.24
neighbors.

One hundred and eighty-eight monosyllabic nonword fil-
lers were generated. All fillers were orthographically legal and
pronounceable.

Apparatus and procedure. Stimulus presentation and data
recording were controlled by the DMASTR software (Forster &
Forster, 1990), which was run on a DeltaCom 486 personal
computer (PC). Responses were timed by means of a voice-key
headset that was fitted to the participant to ensure that the
microphone was kept at a constant distance from the mouth. _

Participants were seated approximately 16 in. (40.64 cm) from
the computer monitor. They were instructed to read words pre-
sented to them as quickly and as accurately as possible. Stimuli
appeared on the screen continuously, one word after another,
preceded only by fixation brackets lasting 900 ms, spaced eight
characters wide. Pronunciation of the word then triggered immedi-
ate presentation of the fixation brackets. If a participant could not
pronounce the word, it remained on the screen for 4,000 ms and
then was replaced by fixation brackets for the next word. Partici-
pants were given 10 practice trials and then received the 370
experimental trials. The experimenter recorded errors by hand.

Results

Reaction times for target and control words were col-
lected, and those for spoiled trials (because of voice-key
failure) and errors were discarded. If a participant mispro-
nounced an irregular target word, the RT for its matched
control was also discarded; conversely, if the participant
mispronounced a regular word, its matched irregular target
word was discarded. Reaction times for fillers were dis-
carded, and the remainder of the data points were winsorized
to the second standard deviation boundary. Item data are
contained in Appendix D.

Data were analyzed both by participants and by items.
Data by participants were analyzed with an analysis of
variance (ANOVA), with regularity and position as factors;
data by items were analyzed with a two-way ANCOVA, with
two factors (position and regularity) and two covariates
(neighborhood size and consistency). Participant and ad-
justed item means are shown in Table 3. Critically, the
interaction between regularity and position of irregularity
was significant in the latency data both by participants, F;(2,
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Table 3

Naming Latency (in Milliseconds) and Percentage Error as
a Function of Regularity and Position of Irregularity by
Participants and by Items (Adjusted for Covariates)

in Experiment 1

Position of irregularity

Regularity Position 1 Position 2 Position 3
Participants
Irregular targets
RT 553 506 509
% error 19.0 8.2 7.9
Regular controls
RT 501 497 510
% error 0.3 13 0.9
Items
Irregular targets
RT 552 516 510
% error 17.9 8.9 7.9
Regular controls
RT 492 502 509
% error 0.0 1.8 0.9

Note. RT = reaction time.

38) = 28.94, p < .0001, MSE = 281.39, and by items, F»(2,
83) = 11.11, p < .0001, MSE = 921.79; regularity had a
greater effect at early positions of irregularity than at late
positions. Position was significant by participants, F(2, 38) =
15.14, p < .0001, MSE = 426.87, but not by items,
F(2, 83) = 1.75. Similarly, regularity was significant by
participants, F(1, 19) = 27.66, p < .0001, MSE = 422.38,
but not by items, Fx(1, 83) = 2.19.

We carried out planned comparisons using randomization
tests? to investigate the regularity effect at each position of
irregularity. The regularity effect was significant both by
participants (p < .00001) and by items (p < .001) at Posi-
tion 1. Similarly, Position 2 produced a significant regularity
effect both by participants (p < .01) and by items (p < .05).
The regularity effect was not significant at Position 3, either
by participants or by items (ps > .5).

A regression analysis that examined the relationship
between cost of irregularity and position of irregularity
while holding the neighborhood and consistency covariates
constant confirmed that the relationship between these
variables was linear, F(1, 83) = 21.21, p < .0001, MSE =
1,843.58, and did not depart significantly from linearity, F(1,
83) = 3.03, p = .09. The line describing these data had a
y-intercept of 71.88 ms and a regression coefficient of
~27.86 ms (7> = .18).

Errors were tabulated and converted to percents and then
were analyzed in the same way as were RTs. Position was
significant by participants, Fi(2, 38) = 18.25, p < .001,
MSE = 0.0018, but not by items, Fy(2, 83) = 1.55.
Regularity was significant both by participants, F(1, 19) =
103.75, p < .0001, MSE = 0.0037, and by items, F,(1, 83) =
5.65, p < .05, MSE = 0.0176; more errors occurred for
irregular words than for regular words. The interaction
between position and irregularity was significant by partici-
pants, F;(2, 38) = 24.46, p < .0001, MSE = 0.0018, and

there was a trend toward significance in the item data, F,(2,
83) = 2.36, p = .10, MSE = 0.0176.

Because the interaction between position of irregularity
and regularity was significant by participants and nearly
significant by items in the error data, we carried out
randomization tests to investigate the size of the regularity
effect at each position of irregularity. The regularity effect
was significant at all positions, both by participants and by
items (all ps < .05).

Simulation

Stimuli

The irregular words and the matched regular controls used in the
experiment were submitted to the DRC model operating under the
standard set of parameters for naming. We expected that the
simulation would show a monotonic decrease in the cost of
irregularity across position of irregularity.

Results

Response times in cycles were collected for each target
word and matched control. There were three errors in
Position 1, and none in the other positions. Only one of these
errors (/w5lz/ for wholes) was a regularization error. The
other two errors, isle and tsar, were the result of lexical and
nonlexical blending. Whereas the first phoneme of isle was
regularized, lexical information accounted for the second
phoneme; the resulting pronunciation was /Il/. Similarly,
although the first two phonemes of tsar were regularized, the
third phoneme—the null phoneme—was produced by the
lexical procedure; the resulting pronunciation was /ts/. We
discarded latencies for these errors and for their matched
controls.

We analyzed latency data in the same way as in the
experiment. Response times were analyzed in a mixed-
design ANOVA, with two factors (regularity and position of
irregularity) and two covariates (neighborhood size and
consistency). Adjusted means are shown in Table 4, and item
data are contained in Appendix D.

2 Where possible, randomization tests have been carried out in
place of other methods of statistical inference. The randomization
method is a versatile, precise procedure that is resistant to
nonnormal data and nonrandom sampling procedures. Statisticians
have asserted that “the randomization test is the truly correct one
and that the corresponding parametric test is valid only to the extent
that it results in the same statistical decision” (Bradley, 1968, as
cited in Edgington, 1995, p. 11). In addition, Cotton (1973, as cited
in Edgington, 1995, p. 11) asserted that “‘randomization tests
permit us to drop the most implausible assumption of typical
psychological research—random sampling from a specified popula-
tion...” and that “random sampling occurs infrequently in
behavioral research and . . . therefore, any statistical tests making
that assumption are questionable unless otherwise justified.”
Whereas randomization programs are available (Edgington, 1995)
for both between-groups and within-groups one-way comparisons,
programs for full-factorial and mixed-design procedures are not. In
the data presented here, we therefore used the randomization
procedure for one-way comparisons only. All tests in this work
were carried out with 100,000 random permutations.
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Table 4

Naming Latency (in DRC Processing Cycles, Adjusted for
Covariates) as a Function of Regularity and

Position of Irregularity

Position of irregularity

Regularity Position 1 Position 2 Position 3
Irregular targets 97.25 87.83 79.84
Regular controls 78.61 77.83 78.12

Note. DRC = dual-route cascaded.

Critically, the interaction between regularity and position
of irregularity was significant, F(2, 80) = 33.82, p < .001,
MSE = 22.60, as the regularity effect was larger for words
with irregularities in early positions than for words with
irregularities in late positions. Both regularity, F(1, 80) =
43,46, p < .001, MSE = 22.60, and position of irregularity,
F(2, 80) = 47.14, p < .001, MSE = 17.93, were significant.

We carried out planned comparisons between irregular
words and regular matched controls at each position by
means of randomization tests. Randomization tests showed
significant regularity effects at Positions 1 and 2 (ps < .001).
The regularity effect was not significant at the third position
(p > .05).

A regression analysis designed to assess the relationship
between cost of irregularity and position of irregularity
while holding the neighborhood and consistency covariates
constant confirmed that the relationship between these
variables had a significant linear component, F(1, 80) =
65.23, p < .0001, MSE = 45.20; the residual nonlinear
regression was not significant (F < 1). The regression
equation describing these data had a y-intercept of 28.70
cycles and aregression coefficient of —8.43 cycles (r2 = .46).

We compared the DRC data with human latency data to
assess how much of the variance in human RT was captured
by the DRC model. Because variance that cannot be
explained by the DRC model—variance due to the phonetic
class of the onset—is controlled through pairwise matching
across regularity condition in our stimuli, we eliminated it
by comparing the cost of irregularity produced by people
with the cost of irregularity produced in the DRC model for
each item pair. The resulting correlational analysis produced
an r2 of .244; thus 24.4% of the variance in the human data
was accounted for by the DRC model.

How should this estimate of the variance accounted for by
the DRC model be evaluated? That is, how much of the total
variance in the human data is due to systematic linguistic
variables that could be accounted for by the model and how
much of this variance can be thought of as error due to
individual differences in participants’ performance? One
method of estimating the contribution of variance from these
systematic linguistic variables to the total variance is to
calculate the overall reliability of the cost-of-irregularity
measure within our participant sample. By correlating the
cost of irregularity for each item pair for one random half of
our sample with the cost of irregularity for each item pair for
the other half of our sample, we should arrive at a reliability
figure that does not include participant error variance; this

correlation is +.604, 2 = .365. On the basis of this
reliability measure, then, we may think of 36.5% of the
variance in cost of irregularity as being due to factors other
than individual participant error variance. This is the largest
amount of variance for which the DRC model should
account. Thus, when evaluating the adequacy of the 24.4%
of the variance in cost of irregularity accounted for by the
DRC model, this 24.4% figure should not be measured
against a total 100% of the variance but rather against the
reliability figure of 36.5%.3

Discussion of Experiment 1 and the Simulation Data

The experimental and simulation data presented here
suggest that the position of irregularity in an exception word
modulates the regularity effect. Words with early irregulari-
ties (in the first or second positions) show a greater
regularity effect than do words with later irregularities, even
when differences in consistency across position of irregular-
ity are controlled. Human data suggest that the function
relating cost of irregularity to position of irregularity de-
creases monotonically and is linear; DRC data show ‘the
same monotonic and linear trend. Moreover, fine-grained
analyses between human data and DRC data established that
DRC data account for a portion of the variance produced in
human data that we believe is satisfactory at this stage of
modeling.

Although both human data and DRC data show a linear
trend, the human data appear to be nonlinear; moreover,
because the cost of irregularity declines from 60 ms to 14 ms
to 1 ms over position of irregularity in the human data, the
position-of-irregularity effect appears to be restricted to, or
driven by, the exception words with first-position irregulari-
ties. This is clearly not the case, however. The human data
show a significant regularity effect at Position 2, as did our
earlier (Coltheart & Rastle, 1994) data; moreover, the human
data fit the linear trend extremely well, with no significant
departure from linearity.

The error data are more puzzling than the latency data.
Participants showed no interaction between regularity and
position of irregularity in the error data, although the human
means do indicate that words with first-position irregulari-
ties produced a greater accuracy cost than did words with
later position irregularities. The nature of the items was such
that many items produced extremely high error rates, and
other items produced no errors. As such, there was tremen-

31t could be argued that if model adequacy is to be assessed
relative to a split-half reliability estimate in the way that we have
advocated here, then only half of the model item data should be
entered into the calculation of the 72 statistic. To address this
potential objection, we split at random the item pairs and recalcu-
lated the correlations between human cost of irregularity and model
cost of irregularity. The resulting r? statistics for each half of the
item data separately reflected what we observed when the entire
sample was used: The DRC model accounted for a relatively high
percentage of the variance in the human cost of irregularity
(r* = .28 and .22) compared with the split-half reliability estimates
derived from the human sample.
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dous variability in the scores, decreasing the possibility of
finding a statistically significant interaction.

As we predicted would be the case in the human data, the
DRC model showed a position-of-irregularity effect in the
error data, producing errors only in words with first-position
irregularities. This result replicates the general pattern of
error data produced by people, although the human data did
show an error effect in both the second and third positions as
well as in the first position. If the error effect at Positions 2
and 3 in the human data is reliable, then further simulation
work with the DRC model may be necessary to simulate
both the latency data and the error data perfectly.

In summary, Experiment 1 replicated our earlier (Colt-
heart & Rastle, 1994) findings but controlled for the
possibility of a confound between position of irregularity
and consistency; the cost of irregularity decreases monotoni-
cally and linearly as a function of the position of the
irregular spelling—sound correspondence in an exception
word. Together, the human and DRC data strongly suggest
that a serial process is at work in reading aloud.

Experiment 2

Experiment 1 replicated our earlier finding that the
position of irregularity in an exception word modulates the
regularity effect (see Coltheart & Rastle, 1994). This effect
remained even when controlling for consistency across
position of irregularity.

We (Coltheart & Rastle, 1994) also reported a failure to
find evidence of strategic manipulation of the lexical and
nonlexical routes. Following Baluch and Besner (1991),
Tabossi and Laghi (1992), and Monsell, Patterson, Graham,
Hughes, and Milroy (1992), we had hypothesized that if
lexical and nonlexical procedures both function in reading,
readers may be able to strategically alter their use of one or
both of the routes, depending on task demands. If one were
reading only exception words, reading would proceed more
quickly and accurately if the nonlexical route were slowed,
because that route produces the wrong response for every
stimulus. Alternately, when faced with only nonwords, a
reader might find it helpful either to make greater use of the
nonlexical route or to make less use of the lexical route. If
evidence were found that implicated this sort of strategic
processing in reading, it could be used as strong support for a
dual-route framework.

After demonstrating a position-of-irregularity effect with
nonword fillers, we (Coltheart & Rastle, 1994) predicted that
changing the nature of the fillers would change the cost of
trregularity at each position: If the fillers were changed to
exception words, perhaps participants would make less use
of the nonlexical route. Because we theorized that the
position-of-irregularity effect was due to the serial process-
ing of the nonlexical route, decreasing its use should diminish the
position effect and, perhaps, the regularity effect altogether.
Against prediction, there was no evidence in our 1994 study that
participants had strategically altered their use of either of the
routes. In fact, the Position X Regularity interaction was
exactly the same in both filler conditions.

We offered several possible reasons why we did not find

the hypothesized strategy effect; however, none made the
issue clear (see Coltheart & Rastle, 1994). What we failed to
take into account were the results of our first experiment.

In Experiment 1 of our 1994 study, we showed that the
regularity effect is modulated by the position of the irregular
phoneme in an exception word; first-position irregular
words show a large regularity effect; words with fourth- and
fifth-position irregularities do not show a regularity effect.
Similarly, in the first experiment of the present article, we
demonstrated that monosyllabic words with irregularities in
the first position show a large regularity effect, and words
with irregularities in the third position do not show a
regularity effect. If words with late irregularities do not show
a regularity effect (even when mixed with nonwords),
reading them in pure blocks should not elicit a strategic
slowing of the nonlexical route.

In our earlier strategy manipulation, we used nonword
fillers in one condition and exception-word fillers in the
other condition (see Coltheart & Rastle, 1994). However,
further analysis of our exception-word fillers shows that
although most of these words had second-position irregulari-
ties, only 38 had first-position irregularities, and 51 had
irregularities in the third or later positions; in fact, the
average point of irregularity was at 2.3 phonemes. If we had
wanted participants to alter the use of the nonlexical route,
we should have used exception-word fillers with irregulari-
ties in the first position, because those exception words are
the most costly in reading aloud.

If all exception-word fillers had irregularities in the first
position, participants may have been more inclined to slow
their use of the nonlexical route (there were no nonwords to
read in this condition), thus diminishing the position effect
and the regularity effect entirely. Instead, we used exception-
word fillers with late irregularities, which may not have
forced participants to alter their use of the nonlexical route
(see Coltheart & Rastle, 1994).

We therefore designed a strategy experiment that used
first-position irregular fillers in one condition and third-
position irregular fillers in another condition. Targets were
monosyllabic nonwords and monosyllabic regular words. Of
many possible outcomes, three would be compatible with the
DRC model. Because the DRC model does not make any
explicit predictions about whether strategic effects occur in
reading at all, the absence of a strategy effect would not be
incompatible with the DRC model. If strategy effects do occur in
reading, however, the DRC model predicts that first-position
irregular fillers will either speed the lexical route or slow the
nonlexical route. If use of the lexical route is increased, then
regular-word naming should become faster, and nonword
naming should become slower. If the nonlexical route is
slowed when naming first-position irregular words, both
nonword naming and regular-word naming should become
slower. Regular-word naming times will thus reveal which
route is under strategic control in this manipulation.

Method

Participants. Participants were 24 first-year students from
Macquarie University. All had normal or corrected-to-normal
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Nonword Targets

Regular Word Targets

Subject Group A:
Targets 1-25, Fillers 1-25

Posl Fillers

Subject Group A:
Targets 51-75, Fillers 26-50

Subject Group B:
Targets 26-50, Fillers 26-50

Subject Group B:
Targets 76-100, Fillers 1-25

Subject Group A:

Pos3 Fillers
- Targets 26-50, Fillers 51-75

Subject Group A:
Targets 76-100, Fillers 76-100

Subject Group B;
Targets 1-25, Fillers 76-100

Subject Group B:
Targets 51-75, Fillers 51-75

Figure 4. The design of Experiment 2. Pos = position.

493

vision and were native Australian-English speakers. They received
course credit for their participation.

Materials. Two lists of targets and two lists of fillers were
created. One list of targets contained 50 monosyllabic regular
words. The other list of targets contained 50 monosyllabic non-
words that were phonotactically legal. One list of fillers comprised
50 monosyllabic exception words, irregular in the first position; the
other list of fillers comprised 50 monosyllabic exception words,
irregular in the third position. Each list of targets and fillers was
then divided randomly into two separate lists of 25 items each.
Lists of targets and fillers were paired together on the basis of
participant group. The design of the experiment is shown in
Figure 4.

Words in each list were randomized. Each list was preceded by
12 practice items. Practice items were exception words with
irregularities either in the first or third position, depending on the
composition of the list.

Stimulus presentation and data recording were controlled by the
DMASTR software package (Forster & Forster, 1990), which was
run on a DeltaCom 486 PC. Latencies were measured by means of
a voice key that fit to the participant’s head, thus keeping the
microphone at a constant distance from the mouth.

Procedure. Participants were divided into two equal groups
and randomly assigned to a counterbalancing condition. Every
participant took part in all four conditions. Every participant saw
every target and every filler but saw each target and each filler only
once. Additionally, the order in which the four lists were presented
to each participant was counterbalanced in two ways: Order of filler
condition was controlled so that participants saw first-position
irregular fillers first as often as they saw third-position irregular
fillers first; additionally, order of lexical condition was controlled
so that each participant began with nonword targets as often as they
began with regular-word targets. To maximize any strategic
manipulations, we always presented filler conditions together;
participants either started with two first-position filler conditions or
started with two third-position filler conditions. Targets and fillers
within each list were presented randomly.

Participants were asked to name each word as quickly and as
accurately as possible. Before being presented with each list, they
were given the 12 practice items. Each list contained 50 items;

participants therefore named 200 items in total plus the practice
items.

Results

Naming latencies were recorded by means of the
DMASTR software, and errors were recorded by hand.
Naming latencies for errors and spoiled trials were dis-
carded, and the remaining RTs were winsorized to the
second standard deviation boundary. Participant data are
shown in Table 5, and item data are contained in Appendix E.#

A mixed-design ANOVA with three factors (participant
block or item list, target lexicality, and filler condition) was
carried out on the latency and error data. In the participant
analysis, lexicality and filler condition were treated as
within-groups factors, and participant block was treated as a
between-groups factor; in the item analysis, filler condition
was treated as a within-groups factor, and lexicality and item
list were treated as between-groups factors.

Main effects of lexicality and filler condition emerged in
the latency data in both the by-participants and the by-items
analyses. Nonwords were read aloud more slowly than
regular words by participants, Fi(1, 22) = 58.23, p < .0001,
MSE = 1,348.80, and by items, F(1, 96) = 58.79, p <
0001, MSE = 2,683.25. In addition, targets paired with
first-position irregular-word fillers were read aloud more
slowly than targets paired with third-position irregular-word
fillers by participants, Fi(1, 22) = 7.10, p < .015, MSE =
906.16, and by items, F5(1, 96) = 35.61, p < .0001, MSE =
410.15. There was no interaction between lexicality and
filler condition, however, either by participants, F;(1, 22) =

4 Because item means were not adjusted in this analysis, they
were very similar to the participant means. Therefore, only
participant means are reported here; complete item data are
contained in Appendix E.
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Table 5

Naming Latency (in Milliseconds) and Percentage
Error as a Function of Target Type and Filler
Condition by Participants

Target type Position 1 fillers Position 3 fillers
Nonword
RT 549 529
% error 2.8 2.5
Regular word
RT 488 476
% error 0.7 0.3
Note. RT = reaction time.

0.97, or by items, F5(1, 96) = 3.28, p = .07. There were no
effects of participant block or item list.

The error data were analyzed in the same way as were the
latency data. Only the effect of lexicality emerged both in
the participant, F(1, 22) = 5.38, p < .05, MSE = 1.31, and
the item, F,(1, 96) = 9.35, p < .01, MSE = (.36, analyses,
as nonwords attracted more errors than regular words. There
were no effects of filler condition in either analysis,
Fi(1, 22) = 0.58, Fy(1, 96) = 0.43. Finally, there were no
interactions between lexicality and filler condition in either
analysis, F(1, 22) = 0.00; F,(1, 96) = 0.00.

Discussion

These data demonstrate that a target’s naming latency is
affected by the nature of the fillers present. Whether targets
are regular words or nonwords, they are named more slowly
when they are mixed with first-position irregular fillers than
when they are mixed with third-position irregular fillers,
indicating a general slowing of the nonlexical route, not a
speeding of the lexical route.

These data lend support to the dual-route account of
reading, and paired with Monsell et al.’s (1992) findings,
they suggest that strategic effects do occur in languages like
English with deep orthography, even though most of the
evidence for these effects resides in languages with shallow
orthography (e.g., Baluch & Besner, 1991; Tabossi & Laghi,
1992).

Lupker, Brown, and Colombo (1997), however, have
recently reported data that suggest an alternative interpreta-
tion to the one we have suggested. They posited that the sorts
of strategy effects reported in Monsell et al. (1992) reflect
not a de-emphasis of routes but rather a more a general
principle influencing speeded performance in the naming
task: Simply put, when fast things are mixed with slow
things, those fast things slow down; when slow things are
mixed with fast things, those slow things speed up. Lupker et
al. (1997) have found this general principle at work across
several different stimulus types, and though this principle
does not necessarily discount the possibility of route shift-
ing, it may account for at least some of the strategy data
contained in the literature.

In this experiment, regular words and nonwords were
mixed either with first-position irregular fillers or with
third-position irregular fillers. As shown in the first experi-

ment, first-position irregular words are named more slowly
than third-position irregular words. According to Lupker et
al. (1997), because first-position irregular words are named
so slowly, they drag down the naming latencies of both the
regular-word targets and the nonword targets. Of course, this
is the same prediction given by the dual-route account and is
what we have reported. Thus, it is difficult using these data
to disentangle the two theories. One possibility for disentan-
gling these theories might be to examine the position-of-
irregularity effect as a function of filler condition, using
fillers with first- or third-position irregularities. Although the
Lupker et al. account would predict a main effect of target
latency driven by filler condition, it would not predict that
filler condition would modulate the slope of the function
relating cost of irregularity to position of irregularity, as a
route de-emphasis account would predict. Unfortunately,
there are not enough words that contain first-position
irregularities to carry out this experiment. Clearly, because
of the generality of Lupker et al.’s principle, it may be
challenging to adjudicate between that account and the
route-shifting account of strategy effects. '

A post hoc analysis of the strategy data we had obtained in
our earlier study (Coltheart & Rastle, 1994) may be helpful,
however, in beginning to evaluate and compare these
theories. In our attempt to modulate the size of the regularity
effect by altering the nature of filler items, we reported no
effects of filler condition that reached significance both by
participants and by items in our 1994 study. Against our
prediction, filler condition (nonwords or exception words)
did not affect either general naming latencies of targets and
controls across position of irregularity or interact with
regularity across position of irregularity.

In reexamining our (Coltheart & Rastle, 1994) data,
however, a randomization test showed a significant differ-
ence between nonword filler latency (M = 577) and excep-
tion-word filler latency (M = 479), p < .0001. Because one
type of filler was much faster than the other type, and
because these fillers were paired with the same set of targets,
Lupker et al.’s (1997) account would predict that a main
effect of filler condition would emerge in the target set: The
very fast filler set would decrease target latencies, and the
very slow filler set would increase target latencies. However,
there was no difference in the general RTs of targets by filler
condition. Thus, Lupker et al.’s account—although it may
explain some other strategy data—does not seem to account
for our earlier data (see Coltheart & Rastle, 1994).

In summary, the strategy effect we report in the present
experiment may be explained within a route-shifting ac-
count or within the account posed by Lupker et al. (1997).
Our explanation for this effect, based on the notion that
participants can alter use of the nonlexical route, also
accounts for our 1994 failure to find a strategy effect; the
Lupker et al. account does not. Of course, although the
route-shifting account seems better able to explain the data
discussed here, further simulation work is clearly required to
assess whether the DRC route-shifting account can explain
the data reported by Lupker et al.
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Simulation

Stimuli and Parameter Set

Although the DRC model has no means by which to adjust the
speed of the nonlexical route in response to the composition of the
stimnulus set, it is not difficult to manually adjust one of the three
nonlexical parameters to simulate a slowing of the nonlexical route.
‘We simulated this decrease in processing speed by increasing the
parameter that controls the speed of serial nonlexical assembly in
the model. This parameter is normally set to 17 cycles. For the
simulation of these data, the parameter value was increased to 22
cycles.

Fifty regular words and 50 nonwords used in Experiment 2 were
submitted to the DRC model for naming. Except for the adjustment
to the interletter interval parameter, the parameter set shown in
Table 1 was used again here. We expected that slowing the
nonlexical route would slow both regular words and nonwords, as
was the case in the human data.

Results

We collected DRC naming latencies (in cycles), which are
displayed in Table 6. Item data are shown in Appendix E.
The DRC model named all of the regular words correctly in
both the standard naming condition and the condition in
which the speed of serial processing was decreased.. The
DRC model made a number of lexicalization errors when
naming the nonword items: It produced two lexicalization
errors in the standard naming condition and produced five
lexicalization errors in the condition in which the nonlexical
route was manipulated. These items were removed from the
analyses.

The DRC simulation produced a lexicality effect, as
nonword targets were named more slowly than regular-word
targets: F(1, 93) = 937.97, p < .0001, MSE = 395.42. The
simulation also revealed a main effect of strategic manipula-
tion, as both nonword targets and regular-word targets were
slowed when the speed of the nonlexical route was de-
creased, F(1,93) = 197.54, p < .0001, MSE = 31.85. Target
lexicality and strategic manipulation interacted, because
nonword naming was slowed more by the slowing of the
nonlexical route than was regular word naming, F(1, 93) =
178.81, p < .0001, MSE = 31.85. Randomization tests
showed, however, that slowing the nonlexical route slowed
both nonword naming (p < .0001) and regular-word nam-

ing (p = .05).

Table 6
Naming Latency (in DRC Processing Cycles) as a Function
of Target Type and Strategy Manipulation

Manipulation
Target type Before After
Nonword 155.42 177.91
Regular word 77.90 78.46

Note. DRC = dual-route cascaded.

Discussion

In Experiment 2, first-position irregular fillers were
accompanied by slowed regular-word and nonword naming.
We believe that this effect was due to a strategic slowing of
the nonlexical route. When the nonlexical route was slowed
manually in the DRC model, the results were the same: both
regular-word naming and nonword naming were slowed.

Although both regular words and nonwords were slowed
in the simulation, they were not slowed equally. Slowing the
rate of the serial operation in the nonlexical route had far
greater consequences for nonwords than it had for regular
words, which were affected only slightly by the slowing of
the serial process in the nonlexical route. This interaction in
the simulation data may prove problematic for the DRC
model or its standard parameter set, given that the human
data did not show a statistically significant interaction
between word type and filler condition, though the means
showed a trend in the appropriate direction. Further simula-
tion work and model development may have to consider
more precisely the contribution of lexical and nonlexical
procedures to regular-word and nonword naming to simulate
the null interaction produced by people.

A close inspection of the item data contained in Appendix
E suggests that the nonlexical contribution to regular-word
naming in the DRC model is not as straightforward as we
originally thought; whereas slowing the serial procedure
generally hurt regular-word naming, in some cases it actu-
ally speeded regular-word naming, and in other cases it had
no effect at all. Simulation work must now focus on
identifying the conditions under which nonlexical process-
ing harms and helps regular-word naming in the DRC
model; this work will most likely involve investigating how
length and the presence of whammies® (Rastle & Coltheart,
1998) affect word naming in human readers and in the DRC
model. In addition, further simulation work may consider
alternative means of simulating the types of strategic
modulations reported here, perhaps by decreasing the GPC
excitation parameter or by increasing the GPC activation
offset parameter.

Whether or not these data pose a problem for the DRC
model or its standard parameter set, the basic strategy
effect—that naming is slowed in the face of exceptional
fillers with first-position irregularities—remains good evi-
dence for the dual-route theory generally. More important,
because strategic adjustment occurred as a result of the
introduction of first-position irregular fillers, models that
attempt to explain these results must contain some

5When a word contains a GPC in which the phoneme is
represented by two or more letters, such as ¢ or ee, the left-to-right
nonlexical procedure of the DRC model will initially translate only
the first letter of these multiletter graphemes to an incorrect
phoneme. For example, the multiletter grapheme ch will initially
activate the incorrect phoneme /k/, which will compete with the
subsequently generated correct phoneme /J/. We termed this
inhibitory influence on the correct phoneme a whammy (Rastle &
Coltheart, 1998), and we report data that suggest that not only the
DRC model but also human readers are susceptible to this effect
when reading nonwords.
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process——we believe a serial process—that explains why
first-position irregular fillers are accompanied by slower
target naming than are third-position irregular fillers. Be-
cause it is unclear how the parallel models would capture the
distinction between first-position irregular word fillers and
third-position irregular word fillers, we do not believe that
these data are compatible with those models.

General Discussion

Experiment 1 confirmed the existence of the position-of-
irregularity effect in naming that we had reported earlier
(Coltheart & Rastle, 1994). Even when controlling for
consistency across position of irregularity, a larger cost of
irregularity was present for first-position irregular words
than was present for third-position irregular words. From
these data, we conclude that the regularity effect is modu-
lated not only by frequency (e.g., Seidenberg et al., 1984)
but also by the position of irregularity in an exception word.
Only exception words that are of low frequency and contain
irregularities in early positions should show a latency or
accuracy cost in naming.

From these results, we predicted that Experiment 2 would
reveal a strategy effect in nonword and regular-word reading
if the filler items were varied by position of irregularity.
Indeed, those fillers that caused readers the greatest diffi-
culty (first-position irregular fillers) led to slower target
naming than fillers that caused readers no difficuity (third-
position irregular fillers). These results thus represent strong
evidence for two routes in the reading system, and we
suspect that these effects come about through participants’
explicit or implicit control over their use.

These experiments as a whole suggest that a new vari-
able—position of irregularity—modulates the regularity
effect and consequently should be examined and controlled
in experiments investigating the naming of irregular words.
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Appendix A
The Phonemic Vocabulary
of the Dual-Route Cascaded Model
Symbol  Example | Symbol Example | Symbol  Example

1 bay S sheep n nat

2 buy T thin P pat

3 burn 18 put r rat

4 boy v putt s sap

5 no Z measure t tack

6 brow b bad u boon

7 peer d dad v vat

8 pair f fat w why

9 poor g game z zap

D then h had # barn

E pet i bean { pat

I pit j yank _ Jjeep

J cheap k cad

N bang 1 lad

Q pot m mad

Appendix B
Nonlexical Rules of the Dual-Route Cascaded Model
Grapheme Phoneme Position Grapheme Phoneme Position
Multiletter rules Multiletter rules (continued)

arre # A che S e
augh 9 A dge _ me
eare 7 A gue g m,e
eere 7 A Ile 1 m,e
eigh 1 A que k m.e
ough 9 A tch J m,e
tsch J ] the D m,e
urre 3 A - a.e 1 A
ai.e 1 A ee i A
are # A ie 2 A
aw.e 9 A o.e 5 A
ea.e i A u.e ju A
ee.e i A ye 2 m,e
er.e 3 A aa # A
ie.e i A ah # A
o.ue 5 A ai 1 A
oae 5 A ar # A
oie 4 A au 9 A
00.e u A aw 9 A
or.e 9 A ay 1 A
ou.e 6 A bb b m,e
ow.e 6 A cc k m,e
oy.e 4 A ch J A
ur.e 3 A ce s me
air 8 A ck k m,e
are 8 A dd d m,e
arr # A de d m,e
awe 9 A ea i A
aye 2 A ee i A
ear 7 A ei 1 A
eer 7 A er 3 A
ere 7 A eu u A
err 3 A ew ju A
ewe ju A ey 1 A
ier 7 A ff f m,e
igh 2 A ge _ m,e
irr 3 A g g m,e
oar 9 A gh g b
oor 9 A gn n A
ore 9 A ie 2 A
our 9 A ir 3 A
ure 9 A je _ m,e
urr 3 A
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Appendix B (continued)

Grapheme Phoneme Position Grapheme Phoneme Position
Multiletter rules (continued) Single-letter rules (continued)
i) - me f f A
kh k A g g A
kk k mee h h A
kn n b i 1 b,m
le 1 m,e i 2 €
u 1 m,e j _ A
mb m m,e 1 1 A
mm m me k k A
mn m nm,e m m A
ng N me n n A
nn n m,e o Q b,m
oa 5 A [ 5 e
oe 5 A P P A
oh 5 A q k A
oi 4 A r r A
oo u A s s A
or 9 A t t A
ou 6 A u v b,m
ow 6 A u u e
oy 4 A v v A
ph f A w w A
PP p m,e y j b
ps s b y 1 m
re r m,e y 2 e
rh r b z z A
2:1 ; :,e Output (phonotactic) rules®
: L 0 v
:g EI‘ il’e 2s 2z e
it ¢ A 3s 3z e
e ju A 4s 4z e
ui u A 5s 5z e
ur 3 A 6s 6z e
uy 2 me 7s Tz e
ve v me 8s 8z e
v v m,e 9s 9z e
wh W b Ds Dz e
wr r b Ns Nz e
x ks A bs bz e
ye 2 m,e ds dz e
ze z m,e gs gz €
2z z me is iz e
Is 1z e
Context-sensitive rules? ms mz e
gufV] g b ns nz e
n[k] N A us uz e
[qlu w m vs vz e
glel _ b dT tT me
cle] s A nk Nk m,e
cli] s A pd pt m,e
clyl s A kd kt m,e
[V][Cled d e Sd St e
[VIICIIC] d e 1d It e
[VI[CICICled d e ju r A
Single-letter rules S__‘u Su A
_ju _u A
a { b,m :
a # e 1_].11 lu A
b b A Jju Ju A
c Kk A sd st A
d d A tz ts A
e E b Td Tt A
. i fd ft A
e i e

Note. A = all; b = beginning; m = middle; e = end.

2The grapheme outside the brackets in column 1 is converted to the phoneme in column 2 in the presence of the
preceding or following context specified in the brackets. [V] = any vowel; [C] = any consonant.

bThe phoneme string in the first column is converted to the phoneme string in the second column.

(Appendixes continue)
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Appendix C
Consistency Analysis
Word Head Body Antibody  Nucleus  Coda Total Word Head  Body Antibody  Nucleus Coda  Total
Irregular words Regular words

aft 1.000 ~.269 —.671 1.000 265 | ape 1.000 .800 .929 1.000 932
aisle 1.000 —-.750 —.953 1.000 074 | hutch 981 1.000 1.000 —-412 1.000 714
asked 1.000 -.391 —.671 1.000 234 | oust 1.000 714 257 1.000 743
aunt -.750 -.200 -.836 1.000 ~—.196 | arch 1.000 1.000 .688 .805  .873
chef -.924  1.000 —.636 .890 1.000 266 | shed 1.000  1.000 .800 .967 1.000 953
chord —.949 .667 1.000 672 1.000 478 | crept 1.000  1.000 .600 .967 1.000 913
chrome 1.000 .500 1.000 702 1.000 .840 | crunch 1.000  1.000 1.000 .889 944 967
chute -.924 428 1.000 —.662 1.000 .169 | shrub 1.000  1.000 1.000 .889 1.000 978
earls 1.000 .600 -.324 1.000 .569 | hitch 981 1.000 .882 .848 1.000 942
earned 1.000 .600 ~.324 1.000 .569 | hoist 981 1.000 1.000 1.000 1.000  .996
gaol —-.685 1.000 1.000 .200 1.000 503 | jest 1.000  1.000 1.000 967 1.000 .993
heir 1.000 1.000 1.000 1.000 | haze .981 1.000 .556 929 1.000  .893
isle 1.000 1.000 1.000 1.000 1000 | itch 1.000 .818 .848 1.000 917
ones -.857 —.556 —.984 1.000 —.349 | oath 1.000 1.000 941 814 939
owned —.750 .000 —.242 1.000 .002 | ounce 1.000 714 257 1.000 743
thai -.921 1.000 1.000 —-.953 .031 | tame 1.000  1.000 1.000 .929 1.000 986
thyme -.921 1.000 1.000 1.000 1.000 .616 | tempt 1.000  1.000 1.000 967 1.000 993
tsar 1.000 .857 1.000 713 .893 | zoom 1.000  1.000 1.000 .648 1.000 930
wholes —-.833 1.000 —.200 702 1.000 334 | hoarse 981 1.000 1.000 1.000 -.353  .726
whore —.833 1.000 1.000 1.000 .542 | hatch .981 .667 .024 396 1.000 614
bears 1.000 -—412 .000 —.706 713 119 | belch 1.000 .000 .926 .967 429 .664
bind 1.000 -.053 =771 —.888 1.000 .058 | bait 1.000 667 1.000 .886 990  .908
books 1.000 778 -.739 -.679 1.000 272 | beech 1.000  1.000 1.000 .983 .869 970
bowled 1.000 -.714 429 —.242 1.000 .294 | breech 1.000 1.000 1.000 983 .805 .958
bull 1.000 -.500 -.774 —.932 1.000 —~.041 | bang 1.000  1.000 -.129 .396 1.000  .653
bush 1.000 —.625 -.774 -.932 1.000 —.066 | bark 1.000 1.000 1.000 .688 1.000 938
butch 1.000 —.600 -.774 -.932 1.000 —.061 | batch 1.000 667 .080 .396 1.000 .629
chalk .873 1.000 =727 -.879 -.111 .031 | cheat .885 667 1.000 652 990  .839
combs .866  —.600 —.650 —.665 1.000 —.010 | carve .866  1.000 1.000 .688 1.000 911
cooks .866 778 -.571 -.679 1.000 279 | crane 1.000 1.000 1.000 929 1.000 .986
cough 866  —.692 —.667 —933 -.391 —.363 | craps 1.000 909 846 .396 983 827
hearts 1.000  1.000 .000 —-.882 1.000 424 | hound .981 .800 1.000 257 1.000  .808
hind 1.000 -.053 -.630 —.888 1.000 .086 | hath 981 —.429 .268 .396 814 406
hood 1.000 —.273 —.286 —.679 1.000 .152 | hemp 981 1.000 .769 967 1.000 944
hook 1.000 667 —.286 —.679 1.000 .340 | hive 981 714 1.000 .945 1.000 928
knows 1.000 .259 1.000 -.242 713 .546 | knead 1.000 —.250 1.000 652 1.000 .680
laughs 1.000 1.000 —.143 —.835 —.222 .160 | loathe 1.000  1.000 1.000 .941 1.000  .988
looks 1.000 778 —-.647 -.679 1.000 290 | leach 1.000  1.000 1.000 941 1.000  .988
loved 1.000 -.200 -.600 —.882 1.000 .064 | lance 1.000 1.000 .609 .396 1.000 .801
mild 1.000 .500 =778 —.888 742 115 | mare 1.000  1.000 1.000 959 .990
minds 1.000 .800 =778 —.882 1.000 227 | mirth 1.000  1.000 1.000 971 814 957
monk 1.000 —.500 —-.733 —.936 1.000 —.033 | mist 1.000 .818 .765 .848 1.000  .886
mousse 1.000  1.000 —.867 —.665 1.000 294 | morgue  1.000  1.000 1.000 .692 1.000  .939
mown 1.000 .000 1.000 —.242 1.000 .552 | mash 1.000 .826 .366 .396 1.000 .718
ninth 1.000 .000 — 474 —.888 1.000 128 | nerve 1.000  1.000 1.000 .823 1.000 965
pear 1.000 —.444 —.200 —.706 —~.088 | pave 1.000 778 1.000 938 1.000  .943
pearl 1.000 1.000 .200 —.324 1.000 575 | pants 1.000 -.111 211 .396 1.000 499
pint 1.000 —.846 —.805 —.888 1.000 —.108 | peck 1.000 1.000 1.000 .967 1.000 .993
quay 1.000 1.000 1.000 1.000 1.000 | kelp 1.000  1.000 1.000 967 1.000  .993
rouge 1.000 .000 —-.200 —.665 —-.579 —.088 | rinse 1.000  1.000 .889 .848 714 890
routes 1.000 1.000 -.200 ~.665 1.000 427 | roach 1.000 1.000 818 832 .805  .891
sew 1.000 —.857 1.000 —.793 .087 | sip 1.000  1.000 .622 .848 984 891
shoe 1.000 —.778 1.000 —.667 139 | sail 1.000 .882 429 .886 1.000  .839
shove 1.000 —.600 —-.333 —.882 1.000 .037 | shrug 1.000 1.000 1.000 .889 1.000 978
shows 1.000 259 1.000 —-.242 713 .546 | shave 1.000 778 1.000 929 1.000 941
soup 1.000 .667 —.333 —.665 1.000 .334 | sank 1.000  1.000 .846 .396 1.000 .848
wolf 1.000 .000 —~.467 —.981 .800 .070 | weed 1.000  1.000 1.000 .983 1.000 997
womb 1.000 —.200 —.733 —.963 1.000 021 | wick 1.000  1.000 750 .848 1.000  .920
yacht 1.000  1.000 —.857 -918 1.000 245 | yeast 1.000 667 —-.333 652 1.000 .597
blinds 1.000 .800 ~.600 —.388 1.000 .262 | blotch 1.000  1.000 1.000 .549 1.000 910
blown 1.000 .000 1.000 —.242 1.000 .552 | blaze 1.000 1.000 1.000 .929 1.000 986
breaks 1.000 —.667 -.750 —.946 1.000 —.072 | bilge 1.000  1.000 852 .848 1.000  .940
brooch 1.000 —.600 —~.750 -.992 756  —.117 | blanch 1.000 1.000 1.000 .396 944 868
brook 1.000 667 -.250 -.679 1.000 .348 | bland 1.000 .846 1.000 .396 1.000  .848
climb 1.000 .000 -.700 —.888 1.000 082 | cliff 1.000 1.000 .250 .848 1.000 .820
crepe 1.000  1.000 .333 —.825 1.000 502 | cloak 1.000  1.000 1.000 .941 1.000  .988
crook 1.000 667 .000 —.679 1.000 .398 | cleat 1.000 .667 600 652 990 782
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Appendix C (continued)
Word Head Body Antibody  Nucleus  Coda Total Word Head  Body Antibody  Nucleus Coda  Total
Irregular words (continued) Regular words (continued)
crow 1.000 133 —.429 —.242 .116 | cage .866 778 1.000 929 .579 .830
flown 1.000 .000 1.000 —242 1.000 552 | farce 1.000 .000 1.000 .688 1.000 738
fronts 1.000 .000 —-.818 -.938 1.000 049 | fierce 1.000  1.000 1.000 1.000 1.000  1.000
glove 1.000 —.600 ~.200 —.882 1.000 .064 | glide 1.000  1.000 1.000 .945 1.000 .989
glow 1.000 133 1.000 -.242 A73 | gaze 968  1.000 1.000 .929 1.000 .980
grasp 1.000 667 .000 —.671 1.000 399 | gland 1.000 .846 1.000 .396 1.000 .848
grind 1.000 —.053 —.800 —.888 1.000 052 | girth 968  1.000 1.000 971 814 951
groups 1.000 .500 -.333 —.665 1.000 300 | gauze 968  1.000 714 765 1.000 .890
hose 1.000 333 1.000 702 —.324 542 | heap .981  1.000 .625 652 984 848
plaid 1.000 —.750 —-.111 —-.953 1.000 037 | peach 1.000 1.000 1.000 652 .805 .891
proved 1.000 —.200 ~.400 —.897 1.000 101 | pierce 1.000 1.000 1.000 1.000 1.000  1.000
scarce .844 .000 -.778 —-.991 1.000 015 | snatch 1.000 667 1.000 .396 1.000 .813
sponge 954 1.000 —.333 —.938 .905 318 | sneeze 1.000  1.000 1.000 983 1.000 997
steak 1000 —.667 —.556 —.946 1.000 -—.034 | slate 1.000  1.000 1.000 .929 1.000 .986
swab 979 -—-.875 172 —-918 1.000 072 | sack 1.000  1.000 .846 .396 1.000 .848
swamps 979 —.857 172 -.918 1.000 075 | scribe 1.000  1.000 1.000 .945 1.000 989
swap 979 -.913 172 -.918 1.000 064 | scab .844 .875 .790 .396 1.000 .781
throws 1.000 .259 1.000 —-.242 713 546 | thatch 421 667 429 .396 1.000 .582
tread 1.000 250 .000 -.721 1.000 306 | tenth 1.000  1.000 1.000 967 1.000 993
troupe 1.000 1.000 -.500 —.665 1.000 367 | tights 1.000  1.000 1.000 1.000 1.000  1.000
truths 1.000 1.000 —.667 -932 —-.357 .009 | trance 1.000  1.000 1.000 .396 1.000 .879
Appendix D
Human and Simulation Data: Experiment 1
Exc RT RT Reg RT RT Exc RT RT Reg RT RT
word (ms) (cycles) word (ms) (cycles) word (ms) (cycles) word (ms) (cycles)
aft 531 108 ape 485 73 ninth 524 92 nerve 476 76
aisle 560 100 hutch 453 83 pear 507 88 pave 511 83
asked 478 93 oust 569 81 pearl 500 93 pants 485 74
aunt 547 93 arch 501 77 pint 545 90 peck 470 78
chef 555 100 shed 474 77 quay 623 95 kelp 490 78
chord 569 97 crept 514 77 rouge 572 92 rinse 484 77
chrome 504 88 crunch 522 77 routes 533 85 roach 503 78
chute 551 101 shrub 476 78 sew 479 92 sip 498 71
earls 521 98 hitch 462 80 shoe 479 84 sail 448 76
earned 499 94 hoist 494 80 shove 465 86 shrug 466 79
gaol 621 112 jest 470 77 shows 466 77 shave 471 82
heir 578 115 haze 500 78 soup 481 84 sank 475 77
isle 533 — itch 518 82 wolf 500 91 weed 473 77
ones 520 91 oath 464 78 womb 512 90 wick 491 77
owned 564 97 ounce 545 78 yacht 532 94 yeast 514 76
thai 605 86 tame 493 79 blinds 514 81 blotch 506 82
thyme 644 77 tempt 504 78 blown 487 71 blaze 482 79
tsar 648 — zoom 487 80 breaks 517 77 bilge 565 78
wholes 563 — hoarse 509 76 brooch 589 81 blanch 520 81
whore 520 108 hatch 448 79 brook 508 80 bland 507 76
bears 523 84 belch 530 78 climb 487 82 cliff 502 74
bind 548 95 bait 499 79 crepe 559 82 cloak 534 76
books 508 79 beech 513 76 crook 504 79 cleat 569 78
bowled 554 91 breech 535 77 crow 518 81 cage 515 78
bull 512 87 bang 471 82 flown 497 79 farce 520 78
bush 527 86 bark 491 77 fronts 550 80 fierce 556 76
butch 561 102 batch 497 79 glove 521 80 glide 505 82
chalk 517 82 cheat 534 80 glow 521 78 gaze 506 77
combs 509 96 carve 492 80 grasp 495 79 gland 517 77
cooks 474 88 crane 483 80 grind 522 81 girth 515 80
cough 519 75 craps 498 80 groups 538 73 gauze 584 81
hearts 504 84 hound 504 79 hose 486 85 heap 466 77
hind 501 91 hath 538 76 plaid 533 76 peach 516 79
hood 473 88 hemp 474 77 proved 512 78 pierce 542 82
hook 441 83 hive 497 80 527 78 snatch 489 77

scarce

(Appendixes continue)
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Appendix D (continued)

Exc RT RT Reg RT RT Exc RT RT Reg RT RT
word (ms) (cycles) word (ms) (cycles) word (ms) (cycles) word (ms) (cycles)
knows 497 77 knead 543 71 sponge 458 80 sneeze 445 79
laughs 476 86 loathe 496 82 steak 499 79 slate 464 79
looks 464 80 leach 508 80 swab 474 84 sack 450 74
loved 465 86 lance 483 78 swamps 477 81 scribe 463 79
mild 483 87 mare 521 77 swap 468 83 scab 492 78
minds 469 85 mirth 515 79 throws 527 78 thatch 574 80
monk 496 94 mist 483 75 tread 501 77 tenth 539 75
mousse 616 91 morgue 525 80 troupe 525 82 tights 496 81
mown 550 90 mash 490 77 truths 539 79 trance 503 76

Note. Exc = exception; Reg = regular; RT = reaction time. Dashes signify errors made by the dual-route cascaded model.

Appendix E
Strategic Effects in Reading Aloud: Human and Dual-Route Cascaded (DRC) Data
Human data DRC data Human data DRC data
Target  Position 1 fillers  Position 3 fillers ~ Standard  Strategic | Target  Position 1 fillers  Position 3 fillers  Standard  Strategic
Nonword targets Regular-word targets
frant 556 569 129 137 jest 490 460 77 77
woize 606 544 156 178 crunch 469 459 77 77
sleam 520 440 153 173 belch 526 500 78 79
stoab 498 495 156 178 bait 507 499 79 80
dreeb 524 516 156 178 breech 517 479 77 77
greel 555 534 143 — batch 501 482 79 78
kneam 699 597 156 178 carve 531 452 80 80
droze 540 507 179 216 crane 491 462 80 79
scaid 548 481 156 177 craps 547 497 80 80
clite 640 585 202 270 hound 536 521 79 79
murse 533 490 151 171 hive 508 487 80 85
cheen 553 523 151 170 knead 506 501 77 77
knafe 685 554 — — leech 482 495 79 79
wheeb 532 553 151 166 lance 506 492 78 78
gurch 574 528 168 196 mash 468 449 77 78
deest 566 589 156 178 nerve 463 466 76 76
kirth 576 525 159 185 pave 483 463 83 89
reeze 499 473 156 178 pants 478 455 74 74
heece 590 544 164 190 peck 484 471 78 78
poote 534 538 156 178 kelp 529 488 78 78
spant 484 444 145 152 rinse 507 491 77 77
treen 533 499 140 157 roach 463 496 78 78
taize 547 550 155 175 sip 480 487 71 76
skart 516 497 146 165 weed 477 480 77 77
speen 463 449 143 161 wick 512 493 77 77
thurn 611 588 155 175 yeast 470 500 76 76
brank 536 544 162 158 blotch 516 470 82 81
sanse 526 516 151 166 blaze 459 466 79 77
plews 544 570 154 175 cliff 516 479 74 74
merch 492 498 156 177 cloak 494 454 76 76
soize 511 501 156 177 cleat 554 565 78 78
pleap 546 560 152 170 cage 481 496 78 82
snerk 462 460 156 177 glide 496 507 82 80
borch 546 556 163 189 gaze 474 475 77 81
jelp 564 517 130 142 heap 462 467 77 76
nent 501 496 119 131 peach 463 476 79 78
whert 561 557 140 — sneeze 444 423 79 79
flar 579 521 146 — slate 476 446 79 77
sperk 495 446 151 173 sack 473 438 74 74
crean 536 518 148 169 scribe 450 429 79 79
frim 617 552 — — scab 476 432 78 78
shest 613 553 149 168 tenth 494 457 75 75
joor 527 544 141 162 ape . 503 516 73 79
phize 629 612 182 231 shed 443 422 77 78
trufe 541 521 194 239 shrub 414 448 78 79
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Human data DRC data Human data DRC data
Target  Position 1 fillers  Position 3 fillers  Standard  Strategic | Target  Position 1 fillers  Position 3 fillers ~ Standard  Strategic
tolph 598 637 169 198 hoist 504 503 80 80
pait 520 496 129 142 itch 462 489 82 85
Zupe 495 504 177 220 oath 473 482 78 79
snocks 466 450 163 185 zoom 451 459 80 82
goph 569 601 153 175 hatch 479 469 79 77

Note. Dashes signify errors made by the DRC model.
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