Ending the 'Reading Wars': How insights from cognitive science can improve children's reading in South Africa

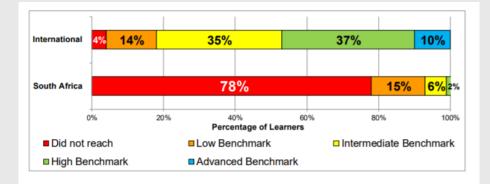
Kathy Rastle

Royal Holloway, University of London

@kathy_rastle
www.rastlelab.com

Literacy is the foundation for knowledge, work, social interaction, and even democracy.

"...every meaningful interaction between a citizen and the state is predicated on a minimum level of literacy, meaning that access to literacy is necessary to access our political process Voting, taxes, the legal system, jury duty." Judge Eric Clay, 6th Circuit, USA


"Our schools will have better educational outcomes and every 10year-old will be able to read for meaning."

- "Early reading is the basic foundation that determines a child's educational progress, through school, through higher education and into the workplace."
- "All other interventions ... will not produce the results we need unless we first ensure that children can read."
- "If we are to ensure that within the next decade, every 10-year-old will be able to read for meaning, we will need to mobilise the entire nation"

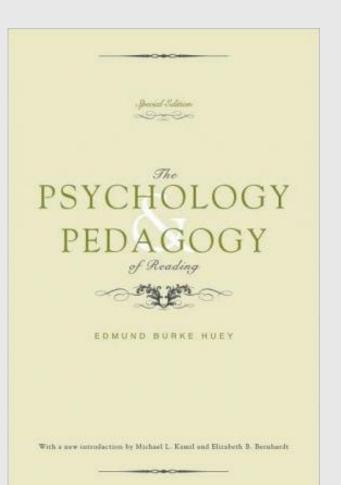
President Cyril Ramaphosa State of the Nation Address 2019

Present situation

- We don't know the present situation
- 78% of children in Grade 4 below low benchmark; they cannot read for meaning (PIRLS, 2016).
- Substantial inequality across language, province, school setting

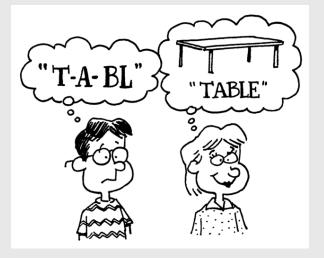
 Overall situation and disparities very likely to be worse given school closures.

Country	Average Scale Score	Reading Achievement Distribution
Russian Federation	581 (2,2) h	
3 Singapore	576 (3,2) h	
2† Hong Kong SAR	569 (2,7) h	
Ireland	567 (2,5) h	
Finland	566 (1.8) h	
Poland	565 (2,1) h	
Northern Ireland	565 (2,2) h	
Norw av (5)	559 (2,3) h	
Chinese Taipei	559 (2,0) h	
England	559 (1,9) h	
2 Latvia	558 (1,7) h	
Sweden	555 (2,4) h	
Hungary	554 (2,9) h	
Bulgaria	552 (4,2) h	
† United States	549 (3,1) h	
Lithuania	548 (2,6) h	
Italy	548 (2,2) h	
2 Denmark	547 (2,1) h	
Macao SAR	546 (1,0) h	
† Netherlands	545 (1,7) h	
Australia	544 (2,5) h	
Czech Republic	543 (2,1) h	
12 Canada	543 (1,8) h	
Slovenia	542 (2.0) h	
2 Austria	541 (2,4) h	
Germany	537 (3,2) h	
Kazakhstan	536 (2,5) h	
Slovak Republic	535 (3,1) h	
3 Israel	530 (2,5) h	
2 Portugal	528 (2,3) h	
Spain	528 (1,7) h	
Belgium (Flemish)	525 (1,9) h	
New Zealand	523 (2,2) h	
France	511 (2,2) h	
PIRLS Scale Centerpoi		
2 Belgium (French)	497 (2,6)	
Chile	494 (2,5) i	
1 Georgia	488 (2,8) i	
Trinidad and Tobago	479 (3,3) i	
Azerbaijan	472 (4,2) i	
2 Malta	452 (1.8) i	
United Arab Emirates	450 (3,2) i	
Bahrain	446 (2,3)	
Qatar	442 (1,8) i	
Saudi Arabia	430 (4,2) i	
Iran, Islamic Rep. of	428 (4,0) i	
Oman	418 (3.3) 1	
Kuw ait	393 (4,1) i	
Morocco	358 (3,9) i	
Egypt	330 (5.6) 1	
South Africa	320 (4,4) i	


Howie et al., 2017

ROYAL HOLLOWAY UNIVERSITY

Why should it be this way?



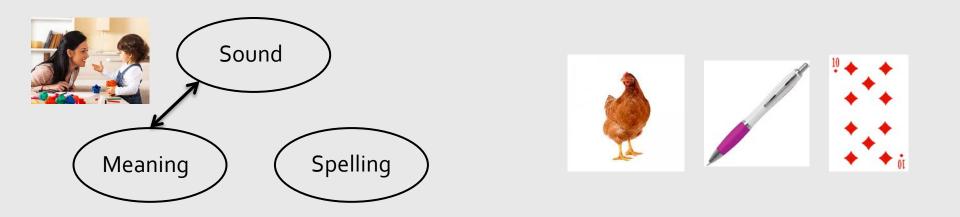
- Over 100 years of research on reading and reading acquisition
- One of the most well-studied problems in the whole of the psychological & brain sciences
- Strong consensus on basic underpinning mechanisms and on how scientific understanding should be translated to instruction
- This is a tractable problem

The "Reading Wars"

http://beamette.blogspot.com/2010/10/read ing-wars-phonics-or-whole-language.html

- Over 100 years of raging debate about how to teach children to read
- Phonics versus "whole language"; more recently "multi-cuing", "searchlight", or "balanced literacy"
- Touchstone for more general debate regarding pedagogical / political philosophy
- Sometimes cast as an attack on teacher knowledge and autonomy

Jess decided to cut and run. She couldn't face what might happen next.

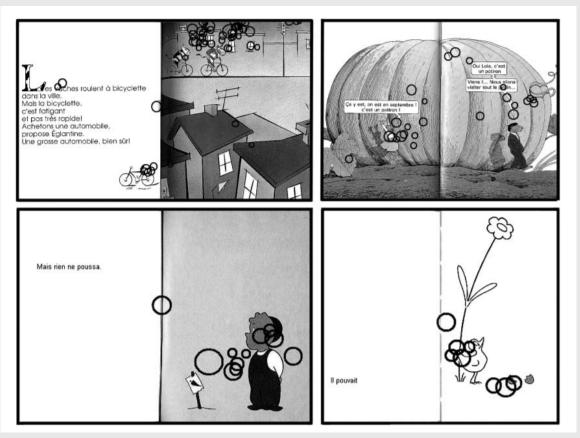

- Analysis of letters and letter positions (e.g. rub vs run; run vs urn)
- Analysis of morphemes (e.g. –ed reflects the past)
- Analysis of meanings of individual words
- Analysis of figurative / ambiguous language
- Analysis of causal connections
- Use of background knowledge; inferencing skills
- Demands on working memory and executive skills

Skilled, adult reading is multi-faceted, but it is a mistake to think that instruction should account for all aspects at the same time.

Reading starts with oral language

ROYAL HOLLOWAY UNIVERSITY

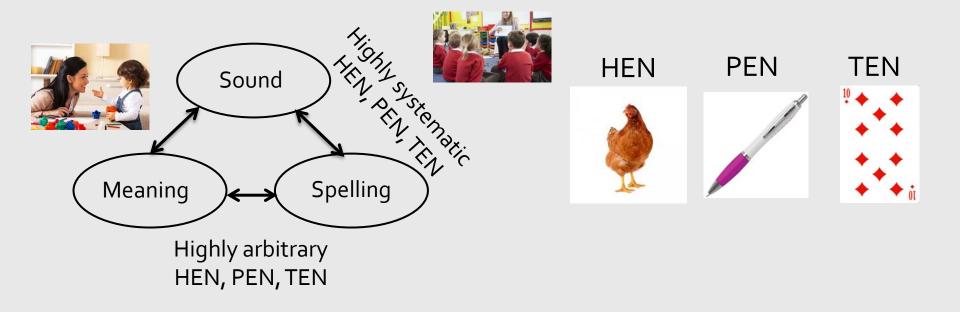
- Vocabulary, grammar, and narrative skill predict later reading comprehension
- Enormous variation in language ability at school entry associated with (dis)advantage
- Multi-lingual context, language of instruction considerations


CAPS provides rich language experiences (e.g. language routines, shared reading) but there is no baseline assessment of children's language ability

Shared book reading

ROYAL HOLLOWA UNIVERSIT

What are 4-5 year old children looking at during shared reading?


Unlikely this could be a major vehicle for development of print skills without other forms of systematic instruction.

Evans & Saint-Aubin, 2005

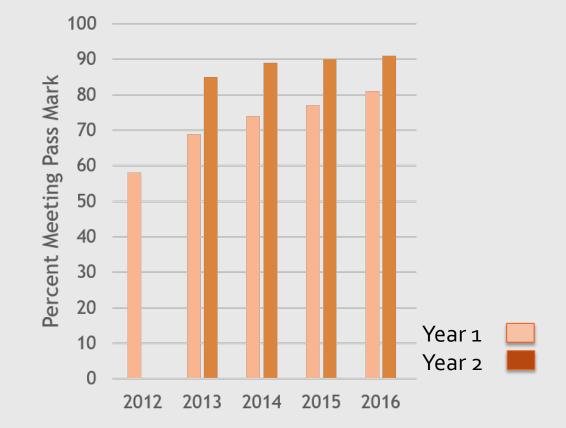
Learning to decode through phonics

- Memorising every word individually is not possible in most languages
- Spelling-sound knowledge provides hook into oral language (read for meaning)
- Virtually all children require instruction on how the writing system works (phonics)

CAPS phonics provision is unlikely to be adequate for most learners

Phonics provision in CAPS

ROYAL HOLLOW UNIVERSI OF LONDON


- Too slow!
 - If children don't have phonics knowledge they will not be able to read for meaning.
 - Instructional time on guided reading / writing is not as effective as it needs to be.
 - Faster pace yields superior outcomes because provides tools to read independently; reading well -> reading often.
- Includes strategies that undermine phonics instruction (e.g. guessing from pictures, context).
- No formal, recorded assessment of phonics knowledge.

Insights from England's phonics screen

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- Short reading aloud test at end of Year 1 (age 5/6)
- 20 words and 20 nonwords (vib, shorg)

Deciding to do phonics is only the first step. Schools need to assess the effectiveness of their practice!

Phonics as "the great equalizer"

390

0

2

6 4

Figure 4.5 - Performance of England's pupils in PIRLS 2016 by their score in the Year 1

phonics check 630 600 Database (NPD) 570 Average PIRLS Score 540 Source: IEA's PIRLS 2016 and National Pupil 510 480 450 420

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

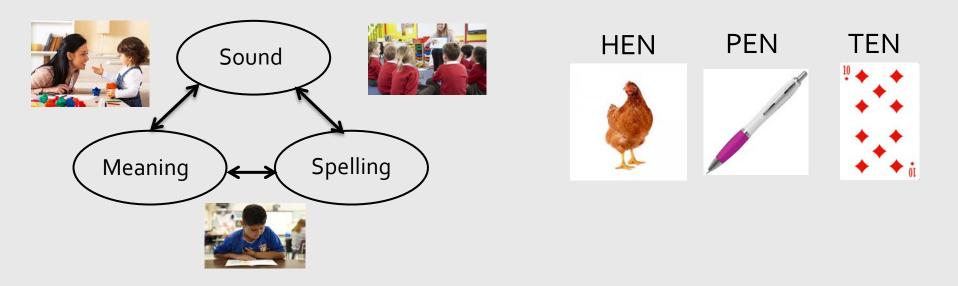
Year 1 Phonics Check Score

Phonics screen score (Yr 1) is the strongest predictor of PIRLS (2016) score (Yr 4)

Stronger than:

- Books in the home
- Welfare status
- Internet connection
- School performance
- Pupil age
- Pupil gender
- Ethnicity
- FAL status
- Pupil has own room

Phonics screen & PIRLS (2016)

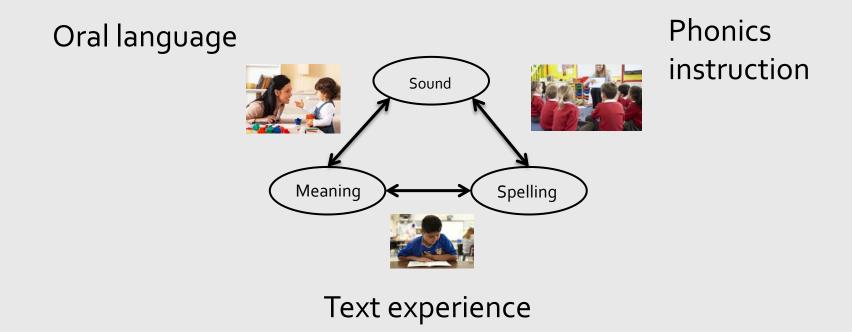


ROYAL

Building fluency

- Decoding skill is a necessary foundation for building fluency
- Fluent word recognition achieved through practice with appropriate books
- Fluency releases working memory for higher-level comprehension (read for meaning)

Opportunity to build fluency in CAPS limited because of poor phonics provision / assessment.

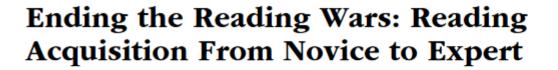

ROYAL HOLLOWAY UNIVERSITY OF LONDON

"Would you like a go?" asked the little girl. Claude nodded politely and climbed onto the scooter. He was a bit wobbly at first but was soon zooming about like nobody's business! Sir Bobblysock had a turn, but he wasn't keen. He much preferred having a nice sit down and a biscuit.

> Claude at the Circus Alex T. Smith

Foundations for every child to become a skilled, confident reader

This is a tractable problem, no matter what the context, and no matter what the language.



"If we are to ensure that within the next decade, every 10-year-old will be able to read for meaning, we will need to mobilise the entire nation..."

- Banish ideology; reading is a scientific problem
- Equip teachers to practice the science of reading
- Align curriculum with the science of reading
- Track progress through formal assessment

Limited instructional time No time to waste!

Readings ...

Anne Castles^{1,2}, Kathleen Rastle³, and Kate Nation^{2,4}

¹Department of Cognitive Science, Macquarie University; ²Australian Research Council Centre of Excellence in Cognition and its Disorders; ³Department of Psychology, Royal Holloway, University of London; and ⁴Department of Experimental Psychology, University of Oxford

> The Dramatic Impact of Explicit Instruction on Learning to Read in a New Writing System

Kathleen Rastle¹, Clare Lally¹, Matthew H. Davis², and J. S. H. Taylor³

¹Department of Psychology, Royal Holloway, University of London; ²MRC Cognition and Brain Sciences Unit, University of Cambridge; and ³Division of Psychology and Language Sciences, University College London

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Psychological Science in the Public Interest 2018, Vol. 19(1) 5–51 © The Author(s) 2018 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1529100618772271 www.psychologicalscience.org/PSPI

(\$)SAGE

www.tinyurl.com/readingwars
OPEN ACCESS

Psychological Science 2021, Vol. 32(4) 471–484 © The Author(s) 2021

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0956797620968790 www.psychologicalscience.org/PS

OPEN ACCESS

Thank you! Kathy.Rastle@rhul.ac.uk www.rastlelab.com

