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Computational modeling has launched a new ap-
proach to studying cognition, wherein any theory about
the nature of human information processing can be ex-
pressed in the form of a computer program that carries out
that processing. In developing a computational model, it
is necessary to specify exactly how information process-
ing is carried out at each stage. As a result, such model-
ing forces exact specification of the cognitive theories to
be modeled. Computational models have thus become
important tools for detecting ambiguity and imprecision
in cognitive theories. Once implemented, the model can
be evaluated directly in order to test whether it provides

a sufficient account of human performance. Such evalu-
ation often leads to the development of more refined the-
ories of information processing.

Implemented computational models of reading aloud
include the parallel distributed processing (PDP) model
(Plaut, McClelland, Seidenberg, & Patterson, 1996), the
connectionist dual process (CDP) model (Zorzi, Houghton,
& Butterworth, 1998), the LEX model (Kwantes & Mew-
hort, 1999), and the dual route cascaded (DRC) model
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001).
With several competing models on the table, a program
of study devoted to adjudicating among the contenders is
necessary in order for one to achieve a better understand-
ing of human word recognition processes.

All of the models above posit different procedures for
computing phonology from print. The DRC and LEX
models each propose that at least one of these procedures
operates serially from left to right across the letter string,
whereas the PDP and CDP models are parallel process-
ing models. Furthermore, the LEX and DRC models dif-
fer in fundamental ways that may also offer grounds for
discriminating between them. Specifically, the LEX model
does not implement rule-based grapheme–phoneme con-
version, whereas DRC’s nonlexical route does. The cur-
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Low-frequency irregular words are named more slowly and are more error prone than low-frequency
regular words (the regularity effect). Rastle and Coltheart (1999) reported that this irregularity cost is
modulated by the serial position of the irregular grapheme–phoneme correspondence, such that words
with early irregularities exhibit a larger cost than words with late ones. They argued that these data im-
plicate rule-based serial processing, and they also reported a successful simulation with a model that
has a rule-based serial component—the DRC model of reading aloud (Coltheart, Rastle, Perry, Lang-
don, & Ziegler, 2001). However, Zorzi (2000) also simulated these data with a model that operates solely
in parallel. Furthermore, Kwantes and Mewhort (1999) simulated these data with a serial processing
model that has no rules for converting orthography to phonology. The human data reported by Rastle
and Coltheart therefore neither require a serial processing account, nor successfully discriminate
among a number of computational models of reading aloud. New data are presented wherein an inter-
action between the effects of regularity and serial position of irregularity is again reported for human
readers. The DRC model simulated this interaction; no other implemented computational model does
so. The present results are thus consistent with rule-based serial processing in reading aloud.
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rent research investigates the regularity effect and its
interaction with serial position in reading aloud in order
to discriminate among the models.

We begin with a brief introduction of the contending
computational models of word recognition mentioned
above. Specific details about how each of the models op-
erates can be found in various publications (Coltheart
et al., 2001; Kwantes & Mewhort, 1999; Plaut et al., 1996;
Zorzi, 2000; Zorzi et al., 1998). For present purposes, only
those details of each model’s architecture that are relevant
to the present research are briefly noted. Serial processing
in reading aloud is then discussed, followed by a descrip-
tion of several studies leading to the present research.

THE MODELS

The Parallel Distributed Processing Model
(Plaut et al., 1996)

The PDP model posits two routes for translating or-
thography to phonology. One route (as yet unimple-
mented) maps orthography to phonology via meaning.
The implemented route consists of orthographic input
units connected to a set of hidden units that are in turn
connected to a set of phonological output units.

This model does not contain explicit word representa-
tions, nor does it have explicit rules for converting or-
thography to phonology. Through training, the model
learns spelling–sound associations based on the degree
to which the spelling–sound associations in a particular
word are consistent with those of other words. The em-
phasis is on the degree to which the mappings among or-
thography, phonology, and semantics of a given input are
consistent with those of other inputs. Processing a word
within the fully trained model is based on learned con-
nection weights resulting from a model architecture of
parallel processing between orthographic, phonological,
and semantic layers. In the fully trained model, informa-
tion is represented in distributed patterns of activation
over groups of processing units. In processing input, ac-
tivation flows freely among the model’s processing lay-
ers until the entire network settles on a stable pattern of
activation corresponding to its interpretation of the
input.

The Connectionist Dual-Process Model 
(Zorzi et al., 1998)

The CDP model has two nonsemantic routes for con-
verting orthography to phonology, a sublexical assembly
route and a lexical route. The sublexical route learns typ-
ical spelling–sound correspondences via a two-layer net-
work. The lexical route converts print to speech via di-
rect activation of the word’s phonological representation,
learned within a three-layer network that consists of or-
thographic input, hidden units, and phonological output.
Thus, through learning, orthographic representations
correspond to phonologic representations in a one-to-
one fashion. The model does not implement an ortho-
graphic lexicon, so print directly activates the word’s
phonological representation. There is potential for inter-

action between the two routes in computing output, be-
cause there are two sources of information feeding into
output.

Analogous to the PDP model, the fully trained CDP
model converts orthography to phonology on the basis
of mappings learned through exposure to a large corpus
of words. Orthographic input representations are fully
connected to phonological output representations. The
important point about this model is that processing
within both routes of the model is parallel in nature.

The LEX Model (Kwantes & Mewhort, 1999)
The LEX model is fundamentally different from all of

the other models in that it consists of only a single routine.
LEX is a model of retrieval from semantic memory.1
Complex patterns in performance are assumed to reflect
simple retrieval operations from a lexicon of 105,000
words. There are three major components to LEX: letter
identification, a retrieval process, and response genera-
tion. To name a word, the system identifies a sequence
of letters in parallel and stores them as an ordered set that
is then used to guide retrieval processes. Retrieval of or-
thography is serial. Phonology and orthography are re-
trieved at the same time, and phonology is later cleaned
up in a filtering process from the noise created by phono-
logical activation produced in the process of identifying
the correct orthography. The first letter is fed into the
system, and all items in the lexicon that begin with that
spelling are activated. The phonology of all items in the
lexicon that begin with that letter are also activated. The
second letter is then fed in, and all items in the lexicon
that contain the first and second letters are activated.
This procedure continues until the best possible match
for the input letter string is located in the lexicon. At the
same time as it retrieves spelling from the lexicon, the
model retrieves all phonemic information associated
with that particular spelling. After the model has settled
on an orthographic representation of the input string, the
phonemic information obtained in the process of retriev-
ing orthography is filtered and the best possible pho-
nemic representation is settled on. Response times rep-
resent the number of samples required in order to retrieve
the data from the lexicon added to the time that it takes
to filter out the best possible phonemic representation.

Thus the LEX model first identifies letters and then
uses those letters to guide lexical retrieval. Once the
string is activated in memory, the phonology gets acti-
vated along with it. The critical point is that there are no
rules for generating phonology from print. A word’s
phonology is stored with a lexical representation and ac-
tivated at the lexical retrieval stage. It is then filtered in
the phonological buffer from phonological activations that
were initially retrieved but are irrelevant.

The Dual-Route Cascaded Model 
(Coltheart et al., 2001)

The DRC model has two implemented nonsemantic
routes for converting orthography to phonology: a non-
lexical route and a lexical route. The nonlexical route
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translates graphemes to phonemes on the basis of a set of
grapheme–phoneme conversion rules. The important point
about the DRC model is that letter identification is carried
out in parallel, but subsequent grapheme–phoneme con-
version occurs serially, letter by letter, from left to right.
The lexical route utilizes a dictionary lookup procedure
for converting orthography to phonology.

Summary
All of the models posit different mechanisms for con-

verting orthography to phonology. The PDP and the CDP
models are purely parallel processing models, in that the
fully trained model architectures do not contain any ser-
ial processing components. The LEX model is a serial
processing model that has no rules for converting orthog-
raphy to phonology. Only the DRC model implements a
nonlexical, serial processing route that has specific rules
for converting orthography to phonology. Therefore,
studies of human word reading may yield evidence rele-
vant to discriminating among the serial and parallel pro-
cessing accounts of reading aloud, as well as between the
rule-based and non–rule-based serial processing models.

The Regularity Effect
Many investigators of visual word recognition make a

theoretical distinction between words with typical
grapheme–phoneme correspondences (“regular” words,
such as WAVE, SAVE, GAVE) and those with atypical
grapheme–phoneme correspondences (“exception” words,
such as HAVE). The standard finding is that exception
words are named more slowly than regular words, but
typically only when words are low in frequency (e.g.,
PINT is slower to name than MINT). This finding is com-
monly referred to as the regularity, or exception, effect.
The regularity effect is a benchmark against which dif-
ferent theoretical accounts of word recognition have
been assessed (e.g., Paap & Noel, 1991; Plaut et al.,
1996; Rastle & Coltheart, 1999; Zorzi, 2000).

The PDP model treats regular and exception words as
existing along a continuum of consistency. Thus, this
model accounts for the regularity effect because the
learned connection weights between orthography and
phonology are weaker for low-frequency exception words
(which are highly inconsistent) than they are for low-
frequency regular words (which are highly consistent).
Consistency is broadly defined as the extent to which the
mappings between the orthography and phonology of a
particular word are consistent with those of other words.
Thus, it takes longer for the system to settle on a correct
output for low-frequency exception words than for low-
frequency regular words.

The LEX model asserts that the source of the regular-
ity effect for low-frequency words is in the phonological
buffer. Irregular words share letter combinations with
other words, but the phonemes associated with certain
letters are not typical. Regular words share letter combi-
nations with other words, and the phonemes associated
with those letters are typical. Thus, the clarity of irregu-

lar words is less than that for regular words in the phono-
logical buffer, so LEX needs more time to filter out a
correct pronunciation for an irregular word.

Both the DRC and the CDP models assume that pro-
cessing regular and exception words through the non-
lexical and lexical routes results in different outcomes. If
a word is regular, both routes produce the same output.
If a word is irregular, the two routes will produce con-
flicting output because the lexical route produces the
correct pronunciation while the nonlexical route pro-
duces an erroneous but regular pronunciation. To resolve
this conflict takes time; low-frequency exception words
are therefore named more slowly than low-frequency
regular words.

The Regularity 3 Serial Position Interaction
Coltheart and Rastle (1994) argued that if processing

through the nonlexical route is serial, as is modeled in
DRC, then the size of the regularity effect will depend on
the irregular component’s location in the word. If the ir-
regular component occurs early in the word (i.e., chef as
opposed to chief ), then the observed regularity effect
would be larger than it would if the irregular component
occurred later in the word (i.e., swap as opposed to
snap). Early in the processing of words such as chef, the
nonlexical route and the lexical route produce conflict-
ing output. It takes time to resolve the conflict, thus re-
sulting in a large regularity effect. However, in words
such as swap, processing through the parallel lexical
route has been completed to the extent that conflicting
output from the nonlexical route results in relatively lit-
tle cost of irregularity. Coltheart and Rastle (1994) and
Rastle and Coltheart (1999) found such a regularity 3
serial position interaction in a naming experiment with
human subjects, and Rastle and Coltheart successfully
simulated this interaction with the DRC model. They
concluded that “models which operate solely in parallel
do not predict this serial effect” (p. 488), and that “to-
gether, the human and DRC data strongly suggest that a
serial process is at work in reading aloud” (p. 492).

No regularity 3 serial position interaction is observed
when Rastle and Coltheart’s (1999) stimuli are named 
by the PDP model. However, both the CDP model and
the LEX model successfully simulate this interaction
(Kwantes & Mewhort, 1999; Zorzi, 2000). Thus, Rastle
and Coltheart were premature in their conclusion that
“models which operate solely in parallel do not predict
this serial effect” and in asserting that the human results
successfully adjudicated between contending computa-
tional models of reading aloud.

What Happened?
How could the CDP model, which consists only of

parallel processing, reproduce a regularity 3 serial po-
sition interaction that is claimed to arise because of an
interaction between serial and parallel processing rou-
tines? It turns out that, in Rastle and Coltheart’s (1999)
stimuli, serial position of irregularity was confounded
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with grapheme–phoneme consistency in such a way that
the most highly inconsistent items were also those in
which the irregular component occurred early in the
word; the CDP model is sensitive to this variable. Thus,
the regularity 3 serial position interaction produced by
the CDP model can be explained as a position-specific
grapheme–phoneme consistency effect (Zorzi, 2000).

It is argued here that there is a better way of approach-
ing the problem of model adjudication than the one taken
by Rastle and Coltheart (1999). They found a set of stim-
uli for which humans produced a regularity 3 serial po-
sition interaction; then they tested the DRC model on
these stimuli and found the same interaction. Because
the DRC model is the only model that incorporates a
rule-based serial processing route, they assumed that
their data had successfully adjudicated among the mod-
els. Rastle and Coltheart’s error was to second-guess the
models. They made a strong inference about how to dis-
criminate among the models, but they failed to test all of
the competitor models. A more powerful approach is to
test all of the models before collecting human data to see
whether the data discriminate among the different ac-
counts. We therefore first examined the position of ir-
regularity effect in each of four models, using a new set
of stimuli. We then collected human data with the aim of
adjudicating among the models.

EXPERIMENT 1

Simulations
Stimuli

A set of 52 low-frequency irregular words and 52
matched regular control words, listed in the Appendix,
were selected from the CELEX English database (Baayen,
Piepenbrock, & Van Rijn, 1993). All of these items were
monosyllabic2 words from three to seven letters long and
had CELEX frequencies between 0 and 90. Thirty-four
words were irregular in the second position and 18 were
irregular in the third position. Control items were matched
to the irregular words on initial phoneme, and were se-
lected so that across items in each condition they were
matched on the basis of word frequency {CELEX fre-
quencies were not significantly different for regular and
irregular words in Position 2 [36.8 vs. 37.6, t(66) < 1] or
in Position 3 [40.6 vs. 43.9, t(34) < 1]} and letter length
{no difference between regular and irregular words in
Position 2 [4.6 vs. 4.5, t(66) < 1] and Position 3 [5.0 vs.
4.9, t(34) < 1]}. (See notes 3 and 4.) No words irregular

in the first position were used, because once these selec-
tion criteria had been met there were not enough items to
warrant their inclusion.

The grapheme–phoneme consistency of each of the
items was determined by analyzing the output of the non-
lexical component of the CDP model in the manner de-
scribed by Zorzi (2000); items and their consistency val-
ues are contained in the Appendix.5 In contrast to the
stimulus set of Rastle and Coltheart (1999), the results re-
vealed no confounding between grapheme–phoneme
consistency and serial position [F(1,78) < 1].

Stimuli were submitted to the PDP (Plaut et al., 1996),
CDP (Zorzi et al., 1998), LEX (Kwantes & Mewhort,
1999), and DRC (Coltheart et al., 2001) models under
their respective standard parameters for word naming.
Items not contained in model training sets were excluded
from simulations. Because of the resulting missing val-
ues, regularity was treated as a between-items factor in
all of the simulation analyses.

Simulations

The PDP Model
Six irregular words and five control words were ex-

cluded from the test set because they do not exist in this
model’s corpus. The model mispronounced one third-
position irregular target (swear); this item was therefore
excluded from the RT analysis. Mean number of pro-
cessing cycles at each position and level of regularity are
shown in Table 1.

Number of processing cycles per item was analyzed
with an analysis of covariance in which regularity and
serial position were between-items factors and neigh-
borhood size and length were covariates. There was a
main effect of regularity [F(1,86) = 17.14, MSe = 0.16,
p < .001], with irregular words taking more cycles to set-
tle than did regular words. There was no main effect of
position [F(1,86) = 0.13, MSe = 0.16, p > .7], and no inter-
action between regularity and serial position [F(1,86) =
0.10, MSe = 0.16, p > .7]. Thus, the PDP model does not
produce a regularity 3 serial position interaction for
these stimuli.

The CDP Model
Thirteen irregular and eight regular words were ex-

cluded from the stimulus set because they do not exist in
this model’s corpus. The model mispronounced four
second-position irregular words (gauche, sieve, soot, and

Table 1
Regularity as a Function of Serial Position (2nd or 3rd) for PDP, CDP, LEX, and DRC
Simulations (Number of Processing Cycles) and Reaction Time (RT, in Milliseconds), 

With Percent Error, for Humans (Item Data)

Humans (by Items)

PDP CDP LEX DRC 2nd 3rd

2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd RT %E RT %E

Irregular 2.1 2.1 4.3 4.7 602 679 89.9 79.9 553 20.2 555 9.7
Regular 1.7 1.8 2.7 2.9 484 498 78.3 77.7 526 4.9 551 4.8
Difference 0.4 0.3 1.6 1.8 118 181 11.6 2.2 27 15.1 4 4.9
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waltz); these items were excluded from the analysis.
Mean number of processing cycles at each position and
level of regularity are shown in Table 1.

Number of processing cycles per item was analyzed
with an analysis of covariance in which regularity and
serial position were factors and neighborhood size and
length were covariates. There was a main effect of regu-
larity [F(1,73) = 60.47, MSe = 0.95, p < .001], with ir-
regular words taking more cycles to settle than regular
words. There was no main effect of position [F(1,73) =
1.71, MSe = 0.95, p > .19], and no interaction between
regularity and serial position [F(1,73) = 0.30, MSe =
0.95, p > .5]. Thus, the CDP model does not produce a
regularity 3 serial position interaction for these items.

The LEX Model
All 104 stimuli were submitted to LEX for simulation.

The model mispronounced three second-position irregular
words (chaff, comb, learnt), two second-position regular
words (cheer, whiff ), one third-position irregular word
(dreamt), and one third-position regular word (cleft).
These items were excluded from the analysis. Mean
number of processing cycles at each position and level of
regularity are shown in Table 1.

Number of processing cycles per item was analyzed
with an analysis of covariance in which regularity and
serial position were factors and neighborhood size and
length were covariates.6 There was a main effect of reg-
ularity [F(1,90) = 10.72, MSe = 4.433104, p < .005],
with irregular words taking more cycles to settle than
regular words. There was no main effect of position
[F(1,90) = 0.94, MSe = 4.433104, p > .3], and no inter-
action between regularity and serial position [F(1,90) =
0.49, MSe = 4.883104, p > .4]. Thus, the LEX model
does not produce a regularity 3 serial position inter-
action for these items.

The DRC Model
All 104 stimuli were submitted to the DRC model for

simulation.7 The DRC model made no naming errors to
these stimuli. Mean number of processing cycles at each
position and level of regularity are shown in Table 1.

Number of processing cycles per item was analyzed
with an analysis of covariance in which regularity and
serial position were factors and neighborhood size and
length were covariates. There was a main effect of regu-
larity [F(1,98) = 64.25, MSe = 16.96, p < .001], a main
effect of position [F(1,98) = 36.19, MSe = 16.96, p <
.001], and an interaction between regularity and serial
position [F(1,98) = 30.00, MSe = 16.96, p < .001], in
which a larger cost of regularity is observed for second-
position items than for third-position items. Planned
comparisons showed that the regularity effect was sig-
nificant for both second-position items [F(1,64) = 91.67,
MSe = 24.18, p < .001] and third-position items [F(1,32) =
12.72, MSe = 3.00, p < .001].

The DRC model thus produces the predicted regular-
ity 3 serial position interaction with this stimulus set;

the other models do not. An experiment that determined
whether or not human reading data exhibit this interaction
would therefore falsify at least one, and possibly three, of
these four models. We turn now to the human data.

Human Data
Method

Subjects. The subjects were 30 undergraduate students from the
University of Waterloo. All individuals had normal or corrected-to-
normal vision and were native English speakers. Each individual
was paid $6.00 for his/her participation.

Materials . All 104 stimuli were used.
Apparatus and Procedure. Stimuli were displayed on a 15-in.

ADI Micro Scan color monitor, using standard Micro Experimen-
tal Laboratory 2 (MEL 2) software (Schneider, 1988) font, in white
on a black background. Stimulus presentation and data recording
were controlled by MEL 2 software, which was run on a Vault Pen-
tium II personal computer. Responses were collected using a voice-
key and response latencies were measured to the nearest millisecond.

Subjects were tested individually and were seated approximately
50 cm from the computer monitor. They were instructed to read
each item out loud as quickly and accurately as possible. Each trial
began with a fixation cross displayed in the middle of the screen for
750 msec, after which time the cross was replaced with the item to
be pronounced. The display terminated when a pronunciation was
made. The experimenter then coded the pronunciation as correct,
incorrect (regularization or other), or mistrial (cough, stutter). The
subjects pressed a button to initiate the beginning of each trial. Each
experimental session began with 16 practice trials, consisting of
words not contained in the test set, followed by 104 experimental
trials presented in random order.

Results
Responses classified as incorrect pronunciations or

voice key failures were removed from the reaction time
(RT) analysis, along with their matched controls. RTs for
correct responses were then subjected to a recursive data
trimming procedure in which the criterion cut-off for
outlier removal is established by the sample size in each
condition for each subject (Van Selst & Jolicœur, 1994).
Outlier removal resulted in 1.4% of the data’s being dis-
carded. Of all pronunciation errors made, 98.7% were
regularization errors. Mean correct RTs and percentage
error for subjects at each level of regularity and serial
position as analyzed by items are displayed in Table 1.

It should be noted that interpretation of the regular-
ization data is somewhat ambiguous because some un-
known proportion of these “errors” may have arisen sim-
ply because the subject did not know a particular word,
rather than the nonlexical routine’s having won out. With
this reservation in mind, the error data are reported for
the sake of completeness. We place more emphasis on
the correct RT data, given that it reflects correct pronun-
ciations. From the perspective of the dual route model,
subjects cannot compute correct pronunciations for ex-
ception words that are unknown to them.

Subjects analysis. Mean correct RTs and percentage
error for subjects were each analyzed with a 2 3 2 re-
peated measures analysis of variance with regularity
(regular, irregular) and serial position of irregularity (Po-
sitions 2 and 3) as factors. Correct RTs yielded a main
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effect of regularity [F(1,29) = 4.52, MSe = 618.69, p <
.05] and a main effect of position [F(1,29) = 31.80,
MSe = 643.46, p < .001]. More critically, the predicted
interaction between regularity and serial position was
observed [F(1,29) = 20.15, MSe = 154.41, p < .001], such
that a greater cost of irregularity was observed for second-
position items than for third-position items. Planned
comparisons revealed a significant effect of regularity
for second-position items [F(1,29) = 18.36, MSe = 321.45,
p < .001], but not for third-position items [F(1,29) =
0.01, MSe = 451.65, p > .9].

Analysis of the errors revealed a main effect of regu-
larity [F(1,29) = 112.82, MSe = 0.29, p < .001], a main
effect of position [F(1,29) = 29.10, MSe = 0.34, p <
.001], and an interaction between regularity and serial
position [F(1,29) = 42.71, MSe = 0.22, p < .001] such that
a greater cost of irregularity was observed for second-
position items than for third-position items. Planned
comparisons revealed an effect of regularity for second-
position items [F(1,29) = 111.28, MSe = 0.35, p < .001],
as well as for third-position items [F(1,29) = 22.17,
MSe = 0.16, p < .001].

Items analysis. Correct RTs and percentage error for
items were analyzed with an analysis of covariance with
regularity (regular, irregular) and serial position of ir-
regularity (Positions 2 vs. 3) as factors and neighborhood
size and length as covariates. The standard problem with
item analyses is that subject variance is incorporated into
the item means, making it difficult to detect an effect
(see Raaijmakers, Schrijnemakers, & Gremmen, 1999).
Rather than not report item analyses, as Raaijmakers
et al. suggest, we extracted subject variance by stan-
dardizing each subject’s data.

This analysis yielded a marginal main effect of regu-
larity [F(1,98) = 2.54, MSe = 0.32, p < .10] and a main
effect of position [F(1,98) = 4.94, MSe = 0.32, p < .05].
The predicted interaction between regularity and serial
position was marginal [F(1,98) = 2.46, MSe = 0.32, p <
.10]. Planned comparisons revealed a significant effect
of regularity for second-position items [F(1,64) = 6.43,
MSe = 0.34, p < .01], but no effect of regularity for third-
position items [F(1,32) = 0.01, MSe = 0.27, p > .9.]

Analysis of the item error data yielded a main effect of
regularity [F(1,98) = 14.04, MSe = 170, p < .001] and a
marginally significant main effect of position [F(1,98) =
3.60, MSe = 170, p < .06]. The interaction between reg-
ularity and serial position was marginal [F(1,98) = 3.71,
MSe = 170, p < .06]. Planned comparisons revealed a sig-
nificant effect of regularity for second-position items
[F(1,64) = 18.04, MSe = 211, p < .001] and no effect of
regularity for third-position items [F(1,32) = 2.70, MSe =
81, p > .1].

DISCUSSION

The human data yielded an interaction between the ef-
fects of regularity and serial position of irregularity such
that the cost of irregularity was larger for second-position
items than for third-position items. This pattern was seen

in both the RT and the error data in the subject analysis,
and in the standardized RT and error data in the item
analysis, replicating the general findings of Coltheart and
Rastle (1994) and Rastle and Coltheart (1999) with a
better controlled stimulus set. In this instance, however,
the implications for computational models are clear:
Only the DRC model reproduced the pattern seen in the
human data. The PDP, CDP, and LEX models all failed
to produce an interaction between regularity and serial
position. On the basis of these data, we suggest that the
PDP, CDP, and LEX implementations are insufficient.

Now that we have established that only the DRC
model can simulate the human data reported here, it is
important that we consider whether the model simulates
these findings for the correct reason. That is, it remains
possible that human readers in this experiment and the
DRC model show an interaction between regularity and
serial position, but for different reasons. We argue that
the DRC model provides a sufficient account of these
findings; nevertheless we will evaluate three alternative
accounts of the human data.

Can Effects of Onset Complexity Account for the
Results?

Kawamoto and Kello (1999) have reported that words
that begin with complex onsets (e.g., slap) are named
significantly more quickly than words with simple on-
sets (e.g., sap; see also Rastle & Davis, 2002). Although
the stimuli involved in the regularity comparison were
matched for initial phoneme, we were not able to match
for onset complexity. Complex onsets were present in none
of the Position 2 irregular items, but they were present in
26.5% of regular items; and although complex onsets
were present in 94% of Position 3 irregular items, they
were present in only 83% of Position 3 regular items.
Thus, effects of onset complexity might increase the size
of the regularity effect at Position 2, but decrease it at
Position 3.

We argue that although the effect of onset complexity
may have contributed to the decrease in the size of the
regularity effect across position of irregularity, it cannot
account for the total effect that we observed. Consider
that the onset complexity mismatch yields a net 26.5% of
the Position 2 items that act to increase the size of the
regularity effect, and a net 11% of the Position 3 items
that act to decrease the size of the regularity effect. On
the basis of the reported size of the onset complexity ef-
fect (14 msec, Kawamoto & Kello, 1999; 9 msec, Rastle
& Davis, 2002), we would expect, at maximum, a 5-msec
decrease in the size of the regularity effect over position
of irregularity (37.5% * 14 msec)—far less than the
23-msec effect that we observed.

Can a Serial Response Execution System
Account for the Results?

Kawamoto, Kello, Jones, and Bame (1998) argued that
a simulation of the position of irregularity effect could be
achieved by a model that operated solely in parallel if it
were assumed that readers begin articulating as soon as the
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initial phoneme is known, regardless of whether subse-
quent phonemes have been computed. Kawamoto et al.
argued that in naming words with late irregularities (e.g.,
crepe, swear), articulation (and the emission of acoustic
energy) begins before the irregular phoneme has been
computed; therefore, no cost of irregularity is evident on
naming latency. In contrast, in reading aloud words with
early irregularities (e.g., chef, bind ), the irregular phoneme
must be computed before any acoustic energy is emitted;
therefore a cost of irregularity is evident. Kawamoto et al.
termed this theory the “initial phoneme criterion” for ar-
ticulation and reported data consistent with this account.
Rastle, Harrington, Coltheart, and Palethorpe (2000) ar-
gued that this theory is false on the basis of anticipatory
coarticulation effects in speeded reading aloud. Since the
position of the vocal organs at the onset of articulation
was affected by the nature of the subsequent vowel pho-
neme, they argued that articulation in speeded reading
aloud does not begin until vowel phonology has been com-
puted. No subsequent account of the original data re-
ported by Kawamoto et al. which deals effectively with an-
ticipatory coarticulation has been developed.

Why Does the Position Manipulation Affect
Regular Words?

Although the size of the regularity effect at Position 3
was 23 msec smaller than the size of the regularity effect
at Position 2, the form of the interaction between regu-
larity and position of irregularity merits comment.
Specifically, the effect of serial position is manifest in
the regular rather than the irregular words; position does
not affect the latency with which irregular words are
named. The form of the interaction in the DRC model is
quite different, and this might mean that human readers
and the DRC model show a decrease in the size of the reg-
ularity effect across serial position for different reasons.

We believe that discounting the DRC model in this in-
stance would be hasty, however. Although stimuli across
the regularity dimension were matched within position,
Position 2 items were not matched to Position 3 items on
several variables—most importantly, initial phoneme.
The nature of a word’s initial phoneme is known to have
a powerful effect on naming latency (see Treiman, Mul-
lennix, Bijeljac-Babic, & Richmond-Welty, 1995), perhaps
because the temporal relationship between articulation
and acoustic energy may not be equivalent for all types of
phoneme (Fowler, 1979), and because different types 
of phoneme may introduce unequal levels of voice key
measurement error (see Rastle & Davis, 2002). It is pos-
sible that our inability to match across the position ma-
nipulation on this factor introduced a general slowing of
response times—a 27-msec slowing—for Position 3
items (we are, of course, unable to offer a precise analy-
sis of the probable effects of this variable, since there are
no models of either the articulatory–acoustic temporal
relationship across different types of phoneme, or the re-
lationship between acoustic energy and voice key detec-
tion for different types of phoneme). At the same time,

Position 3 irregular words have a naming latency advan-
tage relative to Position 2 irregular words—a later oc-
curring irregularity—that cancels the slowing introduced
by phonetic factors. The result is an interaction in which
the regular words—not the irregular words—are slowed
by the position manipulation. We would not expect the
DRC model to produce this form of the interaction be-
tween regularity and position of irregularity, because the
DRC model is not sensitive to the variance in RT intro-
duced by initial phoneme.

Conclusions
We conclude that the human data reported here are in-

consistent with the PDP, CDP, and LEX models, but are
consistent with the DRC model of reading aloud. Fur-
thermore, only the DRC model has a component that ac-
complishes nonlexical orthography–phonology transla-
tion serially with a rule-based translation mechanism.
Thus, the human data are consistent with the claim that
a rule-based serial mechanism contributes to the process
of reading aloud.
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NOTES

1. It should be noted here that the LEX model currently has no seman-
tics. Kwantes and Mewhort (1999) discuss LEX as a model of retrieval
from semantic memory, and it is their terminology that is used here.

2. The purpose for restricting the study to monosyllabic words was
that the PDP, CDP, and DRC models read only monosyllabic words.

3. Ku Ïcera–Francis frequencies were not significantly different for
regular and irregular words in Position 2 [4.3 vs. 2.9, t(66) = 1.2, p =
.24], nor were they significantly different for regular and irregular
words in Position 3 [6.1 vs. 2.8, t(34) = 1.2, p = .23].

4. Items were not matched across position for length. There was a
significant difference in length between Position 2 and Position 3 items
[4.6 vs. 4.9, t(102) = 2.23, SEM = .17, p < .05] such that Position 3 items
were longer than Position 2 items. In all item analyses, therefore, length
was a covariate.

5. We are grateful to Marco Zorzi for carrying out these analyses.
6. The LEX model is different from the other three models tested in

that responses for each item are different from one simulation to the
next. Thus, 10 simulations were run with LEX and item response times
are the mean response times from all simulations. Data for LEX were
trimmed using a maximum criteria cutoff of 2,000, as recommended by
P. Kwantes (personal communication, August 15, 2000).

7. The same test set submitted to each of the other models was also
submitted to DRC. Removing items excluded in each of the other sim-
ulations did not affect the DRC simulation results; an analysis of all 104
items is thus reported.

8. There were more Position 2 pairs than Position 3, which could lead
to more power to detect a regularity effect for Position 2 than for Posi-
tion 3 irregulars. To address this concern, 18 Position 2 items were ran-
domly sampled and analyzed with the 18 Position 3 items. This was
done 10 times, and in all cases but two there was a significant inter-
action; numerically, in all cases the regularity effect was greater for Po-
sition 2 items than Position 3.

APPENDIX
Stimuli, Frequency, and Consistency Values

CELEX Neighborhood K–F
Item Consistency Frequency Size Frequency

Position 2: Irregular Items
bind 0.48 33 12 4
chaff – 27 1 0
comb 20.58 78 6 6
daft – 39 5 0
dealt 0.17 71 1 22
dearth 0.45 16 1 3
douche – 6 1 0
gauche – 18 1 1
ghoul 20.43 12 0 1
hearth 20.6 78 4 4
hood 20.5 74 11 7
knoll 0.19 31 1 2
leapt 20.39 38 3 2
learnt – 81 1 0
mauve 20.56 80 0 1
monk 20.05 67 5 16
mow – 8 19 0
nook – 14 7 0
pearl 20.27 90 1 1
puss – 12 12 0
rind – 21 10 0
rook – 1 11 0
shove 20.5 33 4 2
sieve 20.88 2 40 1
soot 20.74 2 34 1
wad 20.16 45 18 0
waltz 0.23 2 13 1
wan 20.15 41 19 2
wand 20.23 28 11 1
warp 0.33 38 10 4

http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2926L.1178[aid=1262463]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29124L.107[aid=19754]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0272-4987^28^2947L.631[aid=1271435]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2926L.847[aid=1880246]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2924L.1131[aid=299399]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2926L.1178[aid=1262463]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29124L.107[aid=19754]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0272-4987^28^2947L.631[aid=1271435]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2926L.847[aid=1880246]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2924L.1131[aid=299399]
http://masetto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-1523^28^2924L.1131[aid=299399]


SERIAL PROCESSING 413

APPENDIX (Continued)

CELEX Neighborhood K–F
Item Consistency Frequency Size Frequency

wart 0.35 14 21 11
wasp 0.12 42 7 2
wharf 0.33 50 0 4
yearn 0.2 6 2 1

Position 2: Regular Items
bluff 0.88 91 1 8
cheer 0.66 74 3 8
clutch 0.7 82 1 5
dale 0.76 35 16 5
doss – 2 12 0
drake 0.9 31 3 2
drape 0.84 8 4 0
gleam 0.83 82 1 4
grouch – 3 1 0
haunch – 6 2 0
hiss 0.92 44 7 2
lull 0.68 38 10 2
lurch 0.47 30 2 3
meek 0.72 36 7 10
mop 0.85 44 16 3
muff 0.49 10 8 1
nick 0.88 27 12 25
notch 0.99 29 1 6
pod 0.84 40 18 3
pulp 0.52 70 4 5
rhyme 0.73 35 1 3
roost 0.75 19 2 1
shrine 0.9 78 3 7
snap 0.86 78 6 12
spruce 0.73 38 0 5
wade 0.79 13 15 2
wean – 6 8 0
weave 0.86 39 2 4
weep 0.75 29 9 14
whiff 0.85 46 0 1
whirl 0.89 31 1 3
wick 0.92 30 12 4
winch – 20 6 0
yam – 8 12 0

Position 3: Irregular Items
beige 20.32 51 0 1
brook 20.05 71 3 3
crook 20.05 87 4 3
crow 20.07 44 6 2
dreamt – 14 2 0
grind 0.37 43 2 2
plaid 20.69 49 2 1
scone – 8 5 0
stead 20.1 53 5 5
stealth 0.65 26 0 5
stow – 7 6 0
swab – 12 9 0
swamp 20.46 78 3 5
swan 20.27 84 8 3
swap 20.42 17 9 2
swarm 0.42 38 2 3
swear 20.53 64 4 10
tread 20.19 45 6 5
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APPENDIX (Continued)

CELEX Neighborhood K–F
Item Consistency Frequency Size Frequency

Position 3: Regular Items
bless 0.94 46 1 9
boost 0.75 70 2 15
claw 0.75 44 9 1
cleft 0.71 49 2 2
drudge – 9 3 0
grunt 0.98 64 3 2
perch 0.75 38 3 1
scout 0.71 53 6 8
scrape 0.78 33 1 3
sling 0.9 44 8 1
slouch 0.88 9 1 1
slump 0.85 88 5 8
smug 0.63 43 4 7
smut 0.85 12 4 0
spleen 0.77 24 0 2
swoop 0.92 19 5 2
swung 0.45 75 3 48
teak – 10 9 0

Note—Consistency values are listed only for items in CDP model
corpus. K–F, Ku Ïcera–Francis.
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